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Abstract

In the present thesis a three-dimensional finite element formulation for concrete failure under high-
energy impact loadings is presented. The formulation is based on the theoretical framework of continuum
mechanics and irreversible thermodynamics. In order to obtain a non-unilateral contact/impact description, the
spatial regions occupied by the bodies under collision are discretized with linear tetrahedral elements. The
temporal discretization is traditionally conducted by finite difference method. During the time of contact, the
contact constrains are satisfied with the Lagrange multiplier method adapted for the explicit time integration.
The frictional behaviour on the contact interface is assumed to be of kinematic type described with the
Coulomb friction model. At the numerical implementation level, the dissipative nature of friction forces is
introduced via the relaxation of tangential displacement on the contact interface. The quantitative description of
expected finite strains is conducted according to the Update Lagrange formulation of motion. Following the
standard notations used in contact mechanics, the concrete body is denoted as target body and the body that
transmits its kinetic energy, as the contractor body. The hyperelastic material model is used to define the
constitutive behaviour of the contractor body. On the other hand, in order to simulate the mechanical behavior
of the concrete body, the stress-strain relationship is carried out via the rate sensitive microplane material
model with relaxed kinematic constraint (co-rotational formulation). It is important to note that the concrete
strain rate effect can be particularly evidenced in impact loadings. Thus, to numerically replicate the concrete
response in a realistically way, the strain rate effect is introduced by means of the energy activation theory of
bond ruptures. For this purpose, the macroscopic strain measure is performed with the Green-Lagrange strain
tensor. Damage and cracking phenomena are modeled within the concept of smeared cracking. Furthermore,
the crack band method is used with the aim of assuring the objectivity of the analysis with respect to the size of
the finite elements. Finally, in order to validate the developed formulation, the free fall drop weight experiment
is numerically replicated. The retrieved numerical results are evaluated, discussed and compared with the
experimental results. A parametric study aimed at numerical investigation of the influence of loading rate on
the failure mode of beams under impact loadings, is carried out. It is shown that the plain beam resistance and
failure modes strongly depend on the loading rate. Indeed, the numerical formulation predicts correctly the
beam failure patterns investigated with the experimental methodology. Namely, for relative low impact
velocities the numerical results coincide with the experimental results providing the expected bending mode of
failure (mode-1). On the other hand, by increasing the loading rate, there is a transition of the failure mechanism
from bending to shear mode (mixed mode). Based on the retrieved numerical predictions, one may conclude
that the developed numerical formulation is adequate for investigating the response of concrete under high-
energy impact loadings. Indeed, due to the fact that the failure process in concrete occurs in a very short period
of time, the numerical study is useful and necessary for better understanding of damage phenomena occurring

under impact loadings.
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Nomenclature

Respecting the traditional signatures used in the theory of continuum mechanics, in the present Thesis the
scalar quantities are denoted by a Latin or Greek italic letter while vectors, tensors and/or matrices are
represented by the boldface characters. The subscripts i, j, k, I, r and s denote specific component of a vector or

tensor quantity in question. When possible, the Einstein summation convection will be used.

b-A-b=b"Ab=b Ab,
S —

tensor matrix indicial
notation notation notation

Only the most frequent symbols are listed below.

Chapter 2
P 1* Piola-Kirchhoff stress tensor
S 2" Piola-Kirchhoff stress tensor
S back-rotated Cauchy stress tensor
€ Cauchy strain tensor
c Cauchy stress tensor
X coordinates vector for a particle in the material (referent) configuration
X coordinates vector for a particle in the spatial (current) configuration
F deformation gradient tensor
4 deformation mapping function
P density
F force
E Green-Lagrangian strain tensor
by Helmholtz free energy function
| identity matrix
J Jacobian of deformation
K Kinetic energy
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[=]

m (on

Chapter 3

"x

u(x)

I

c

I,

u

I

Kirchhoff stress sensor

Kronecker delta

Lamé constants

left Cauchy-Green deformation tensor
left stretch tensor

mass

material rotation tensor

Material stiffness tensor

notations for the continuum referent and current configuration, respectively

orthonormal basis in the referent and current configuration, respectively

Poisson ration

rate-of-deformation tensor

right Cauchy-Green deformation tensor
right stretch tensor

spin tensor

strain energy function

surface traction

velocity gradient tensor

Voight notation for the Cauchy stress tensor
volume forces

Young’s modules

coordinates vector of a FE node n

displacement vector for an arbitrary point inside the element domain Q.
domain boundary where the contact constraint are activated
domain boundary where the displacement boundary conditions are prescribed

domain boundary where the traction boundary conditions are prescribed
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Nomenclature

w X
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[
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@
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oV

domain occupied by a finite element

FE assembling operation (relate local dof to global dof)
FE external force vector

FE internal force vector

FE interpolation function matrix

FE out-of-balance force vector

FE stiffness matrix

FE strain-displacement matrix
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Jacobian transformation matrix
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material stiffness matrix
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number of contact constraint violation

number of element in the spatial discretization

number of microplanes used to perform the unit sphere approximation
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stiffness matrix
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test function (virtual displacement)
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unit normal vector
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microplane secant shear module

microplane secant volumetric module

normal and tangential strain component on the ¢ microplane, respectively
rectangular Cartesian coordinates (material coordinates)
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By
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jump in the stress field on I',

Lagrange multiplier vector

Newmark integration parameters
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Chapter 1

Introduction

1.1 Motivation

The subject of the thesis is primary concentrated on the mechanical behaviour of structures made of quasi-
brittle material under severe impact loading. Particularly, the main attention is here dedicated on concrete
structures subject to high-energy impact loading. Note that these kinds of events are characterized by highly
concentrated strains generated in a relatively very short period of time. Under these circumstances, the
considered transient event can be widely found in industrial practice as well as during the exploitation of civil
structures. Thus, it is easy to agree that, due to the complex mechanism of failure, the experimental and
numerical investigations are needed to accurately predict the consequence and eventual risks caused by impact
accidents. The fact that impact loading can occasionally lead to structure collapse, obliges us to study impact
loadings.

Behind the author general interest for mechanical interactions, the thesis mainly emerges from the author’s

wishes and intentions to modestly contribute to this wide and complex issue.
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§ Problem definition

The structure response to impact is influenced by the structure mass and stiffness. Due to the complexity of
such system, the author assumes that a productive numerical investigation can be obtained by reducing the
scale of observation. According to that, the focus of the thesis is retained on concrete elements (such as beams,
columns or plates) and not on the whole concrete structure. Furthermore, in order to focus the study only on the

concrete behavior, the aspects related to reinforcements are here omitted.

The aforementioned assumption may be supported by the fact that the structure global stiffness degradation is
always related to local damage (structure elements) which can be generally interpreted as a consequence of
concrete local failure. On the other hand, with a realistic numerical prediction of the response of structural
elements, the analysis of the whole structure can be obtained by extending the same concept to the entire
structure. However, since at this scale of observation the presence of reinforcements cannot be neglected,
passing from local to global analysis is obviously not a trivial task. In order to preserve simplicity of the
analysis, the abovementioned is used as an additional argument in favor of focusing the study solely on

structural elements (particularly beam elements).

By defining the subject of interest, the problem definition arises almost naturally. Namely, as the title of the
thesis indicates, the intention is to numerically simulate the mechanical behavior of concrete elements under
impact. The task will require a numerical formulation sensitive to a complex mechanism of the growth of
concrete microstructural cracks. Thus, in order to reproduce the acute nature of failure under severe impact
loading, the numerical formulation should be able to predict macrostructural (inertial forces) but also

microstructural mechanical effects (strain rate effect).

It is clear that the intention required accurate model calibration. For this purpose, the proposed numerical
formulation will be validated by performing a comparative study of available experimental results with related
numerical predictions. In order to validate the range of applicability, the experimental reference will be chosen
in a way to activate different types of failure (Bentur, Mindess & Banthia, 1986; Sukontasukku & Mindess,
2003; Sukontasukkul, Nimityongskul & Mindess, 2004).

It is important to point out the problem shows highly non-linear properties. The non-linear nature of the
problem directly implies that the numerical description should provide computational stability and robustness.

Namely, it is evident that:

(i) anon-linear mechanical behavior of concrete (material non-linearity),
(if) possibly large displacements in front of the contact/impact zone (geometrical non-linearity)

(iii) and a non-linear nature of contact description between bodies (contact non-linearity)

will require the use of an incremental-iterative solution strategy.
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§ Note on experimental observations

The behavior of concrete under severe impact loading is currently under intensive experimental and numerical
investigation (Reinhardt, 1982; Bentur, Mindess & Banthia, 1986; Comite Euro-International Du Beton (CEB),
1988; Weerheijm, 1992; Buchar, Voldiich, Rolc & Lazar, 2002; Ballew, 2004; May, Chen, Owen, Feng &
Bere, 2005; Remennikov & Kaewunruen, 2007; Zinn, Stangenberg, Borgerhoff, Chauvel & Touret, 2007).
Particularly, due to the presently available computational possibilities, the numerical investigations are
especially attractive. However, to reproduce the real response of concrete under impact, there is an evident need
for experimental observations. Namely, the validation of numerical analysis requires extensive experimental

documentations, which are also related to a lot of difficulties due to the complexity of impact phenomena.

The most popular and efficient experimental method of studying concrete under impact loading is the free fall
drop weight test. The experiment mainly consists of dropping the impact hammer (with pre-defined mass) on
concrete element placed at the end of the dropping trajectory. Two typical experimental devices are shown in
Fig. 1.1.

Figure 1.1 Free fall drop weight test. Pictures taken from: a) May et al. (2005) and b) Sukontasukkul et al. (2004)

Evidently, the system input energy is defined by the hammer mass and the dropping altitude. Note that the
same system input energy can be obtained at a relatively low but also at a relatively high impact velocity.
Accordantly, one could ask why the affiliation of impact character is here expressed in terms of energy instead
of velocity. Well, from the hierarchic point of view, it can be said the description in terms of energy is more

accurate then the description in terms of velocity. Namely, both the velocity and mass information are
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contained in the kinetic energy of the hammer. For this reason, the energy-related description seemed the most
adequate choice. However, it should be pointed out that even in case of elevated energy of impact loading,
characterized by a relatively slow impact velocity, the response of concrete will be significantly different than
in case of impact with the same impact energy but with a relatively high collision velocity. Therefore, the
energy-related description should not be viewed as a general classification of consequences on bodies under
impact.

With a pre-defined test program, the measurement of forces in the free fall drop weight experiment is
performed by accelerometers. It is also important to point out that in order to transform the whole system input
energy into the kinetic and strain energy of the concrete element under consideration, the dropping hammer
should be made of steel with high stiffness. Only in this manner the presents of its strain energy can be
minimized (Fig. 1.2).

The results of the briefly described experimentation methodology (Fig. 1.1) show that loading rate significantly
influences the response of structures made of quasi-brittle materials. In fact, by comparing the concrete
response under static loading conditions with its response at high loading rate (impact loading), it can be
deduced that the nominal strength increases with the increase of loading rate. Moreover, it is well known that
the failure also depends on loading rate. The response depends on loading rate through three different effects.
(i) Through the creep of the bulk material between the cracks. (ii) Through the dependency rate of the growing
micro-cracks. (iii) Through the effect of structural inertia forces, which can significantly influence the state of
stresses and strains at the material level. Principally, each one of the abovementioned influences is always
present. However, depending on the type of material and loading rate, the first, the second or the third effect
may become predominant. As far as cracking and damage phenomena are concerned, the first effect is
important only in case of relatively low loading rates (creep-fracture interaction). The second effect
predominates in case of moderate loading rates while the last one, in case of relatively high loading rates
(impact loading).
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Apart the influence of loading rate, an additional problem related to high-energy impact loading is rather
complex mechanism of energy transfer that takes place via contact surfaces between colliding bodies (Comite
Euro-International Du Beton, 1988). Furthermore, according to the work of Sukontasukkul and Mindess
(2003), the experimental analysis show that impact loading cannot be viewed as a problem of strain rate or
extreme case of stress rate. Also, as Bentur, Mindess and Banthia (1986) reported, the experimental tests prove
that it is difficult to obtain the energy balance by measuring the mechanical energies in the experiment. A few
statements taken from the relevant article (Bentur, Mindess & Banthia, 1986) may summarize some interesting

experiment findings:

“Even for the relatively low impact velocities used in these tests (~3 m/s), the peak load

in the specimens occurred within about 1 ms after contact.”

“The use of accelerometers mounted on the beams can be used to estimate the inertia
load, as well as specimen velocities and accelerations. This permits load-deflection

curves for impact loading to be generated.”

“At the peak load measured by the instrumented tup, the inertia load may account for

more than 2/3 of the total load.”

“Failure to account for the inertia load may result in misleading conclusions.”
“Estimations of energy from the instrumented tup loadings do not agree with the sum of
the calculated kinetic energy and the energy expended in deflecting and fracturing the

bl

beam.’

In order to justify the need of the proposed numerical formulation, resume that the mechanism of energy
transformation cannot be identified through an experiment (Bentur, Mindess & Banthia, 1986). However, the
kinetic energy transformation can be revealed numerically with an appropriated numerical formulation. Also, it
should be point out that the experimental technique is somehow limited due to the fact that, even in case of low
impact loading, the peak load is registered within 1 ms after the contact take place. Consequently, the relevant
part of the deformation history is trapped in a very small time period and can be hardly reached by
experimental methodology.

A similar problem can be observed in the case of penetration or concrete perforation problems (Fig. 1.3 — photo
taken from the web site of National University of Singapore - Impact Mechanics Laboratory). Namely, from

the numerical aspect, the problems are almost identical except for that the related numerical description should
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be able to handle highly concentrated strain in front of the impact zone (requirement for remeshing). Another
very important difference from the free fall drop weight experiment is the relevant presence of heat energy
arising from friction between bodies. For both experimental and numerical researcher, the presence of
temperature gradients represents a challenging problem. Numerical formulations need realistic constitutive
equations, which are often poorly calibrated being directly related to difficulties with experimental
measurements. Thus, the currently conducted experimental researches are based on the principle of causality.
This means that for the given system input data (impact velocity) the output system data is registered (deep of
penetration). In this sense, the deformation history can be hardly obtained, since the penetration trajectory
cannot be followed by instrumental devices. The difficulties in measurement are not only related to spatial
restrictions but, due to the fact that penetration occurs in small time interval (~1 ms), also to temporal
restrictions. However, there are promising experimental methodologies (like x-ray laminography) which are
already in use for investigation of damage phenomena caused by impact loadings on concrete panels
(Vossoughi, Ostertag, Monteiro & Albert, 2006).

"

3
- ¢

Figure 1.3 Impact of steel nail into concrete a block

§ Note on numerical expectations

There are various numerical studies which are conducted in order to investigate the effect of loading rate on the
response of concrete structure elements (Dilger, Koch & Kowalczyk, 1978; Reinhardt, 1982; Curbach, 1987,
CEB, 1988; Bazant & Gettu, 1992; Weerheijm, 1992; OzZbolt & Reinhardt, 2001, 2005; Saatci & Vecchio,
2009). Most of the studies employ different constitutive relations similar to the spring-dashpot models of visco-
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elasticity. Some models cover only a limited range of loading rates whereas other models are more general and
applicable to large range of loading rates. However, from the perspective of strain rate sensitivity effect, there
are only a limited number of numerical studies in which the concrete failure mode is investigated as a function
of loading rate (Sukontasukku & Mindess, 2003; Ozbolt & Reinhardt, 2005; Saatci & Vecchio, 2009). In the
proposed numerical formulation a rate dependent model, based on the rate process theory (Krausz & Krausz,
1988) of bond ruptures, is used. The model was originally proposed by Bazant et al. (2000) and later coupled
with the microplane model for concrete. The choice can be justified by simply taking into account the results of
other studies where the mentioned combination of models showed impressive correspondence with
experimentally evidenced phenomena (Ozbolt & Reinhardt, 2001; Ozbolt, Rah & Mestrovi¢, 2006).

With regard to the free fall drop weight experiment (Fig. 1.1 & Fig. 2.1), the subject of thesis will be based on
the failure of a plain concrete beams under impact loadings. However, the present numerical description will be

principally valid for impact loadings of any type.

In order to validate the proposed formulation, the numerical experiment is conducted by reproducing the free
fall droop weight experiment (Fig. 1.1) in which the altitude of the dropped hammer is set as a variable. Since
the contact force between the dropped hammer and the tested concrete beam is unknown, the mechanical
interaction have to be numerically simulated (contact problem). The range of investigated impact velocities will
imply very high strain rates but still smaller than the strain rates at which the dropping hammer would cause

extreme local damage (concrete local crashing).

According to the abovementioned, a development of the present numerical formulation represents a logical
extension of the current state of knowledge in the field of concrete behavior under severe impact loadings.
Namely, due to the fact that the failure process of concrete occurs in a very short period of time, the numerical
study is useful and necessary for a better understanding of concrete damage phenomena under impact. Unlike
the experimental investigations, by assuming isothermal conditions, the numerical simulation should reveal the
kinetic energy transformation into other mechanical energies generated during the deformation history.
Furthermore, it is also expected that the proposed numerical formulation will be able to reveal the contribution
of inertial, viscous damping and internal forces into reaching equilibrium state with contact forces on the
contact/impact surface. The formulation will consequently help defining further research directions of this still

insufficiently explored scientific and engineering field.

Resuming, the primary aim of the study can be viewed as the test of whether the proposed numerical
formulation is able to realistically predict the rate-dependent failure mechanism and, if it can, as investigation

of the influence of impact velocity on the concrete response.
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1.2 Hypothesis

The hypothesis was (2006):

“For concrete structures under high-energy impact loadings, the structural response is controlled

by inertial forces and the influence of strain rate sensitivity is less important and can be

consequently neglected in related numerical simulations. ”

and in the present thesis | will verify if the proposed three-dimensional numerical formulation, for materials

and loadings type under consideration, predicts my suspicions.

1.3 Purpose of the thesis

Following the conclusions drawn from experimental observation; in order to numerically replicate the concrete

failure at impact load, the numerical formulation should be characterized by highly predicting abilities. This

fact can be interpreted as a primary purpose of the thesis, since it is a prerequisite for the accomplishment of the

following intentions.

Based on the adopted theoretical assumptions and numerical approximations, the main purpose (that
will lead to others) is to check whether the developed numerical formulation is able to realistically
predict the concrete failure at different loading rates. If it can, the following purposes shall be taken

into account.
Reveal the transformation of impact kinetic energy into other mechanical energies.

Find out the contribution of inertial, viscous damping and internal forces to reaching the equilibrium

state with contact forces arises as a consequence of bodies collision.

Based on the objective overview of the proposed numerical formulation, define further research
directions for the development of numerical models for simulation of concrete penetration and

perforation problems.
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1.4 Outline of the thesis

Before summarizing the chapters, note that the thesis can be viewed as a unification of selected current
knowledge and certain new findings in the field of computational mechanics, needed for the numerical
investigation of quasi-brittle materials under severe impact loading. The thesis contains ten individual chapters

which are summarized as follows.

Chapter 2 — Continuum preliminaries

It is well known that the structural response to any type of external loading is always governed by the structure
micro-mechanical properties. The physical properties of practical importance emerge as a consequence of
material particles interaction. Thus, it is evident that the body collision event implies a very complex
mechanical system which can hardly be approached at this micro-scale of observation. Therefore, the problem
is here defined in the framework of continuum mechanics. Accordantly, the presence of material particles is
here ignored and the natural discontinuity is replaced by a presupposed continuous distribution of matter. For

this purpose, the second chapter is dedicated to a brief overview of the continuum mechanics theory.

Chapter 3 — Spatial discretization

As the title of the thesis suggests, the finite element method (FEM) is used to perform the discretization of
governing equations in the spatial regions occupied by bodies under collision. Since the temporal discretization
and the discussion related to contact mechanics are addressed in two separated chapters, the time dimension
and restriction on displacements (caused by contact) will be temporary ignored. Accordantly, the third chapter
will address the derivation of the weak form of the previously given strong form of the problem. Later on, the
neglected influences will be applied to derive the discrete form of equilibrium equation. Furthermore, as the
choice of finite element (FE) directly influences the numerical description of contact/impact events, some
useful properties of the here used linear tetrahedral element will be presented. At the end of the chapter, a brief

overview of the Update Lagrange formulation, used to solve the non-linear deformation problem, will be given.

Chapter 4 — Temporal discretization

It is clear that impact loadings are time depended phenomenon characterized by the evident presents of inertial
forces. With the aim of introducing the contribution of inertial forces in the equilibrium equation, the principle
of least action (Hamilton principle) will be here presented. After that, the temporal discretization of the
unconstrained equation of motion (no contact) will be carried out by application of the Newmark’s Beta
integration method. For this purpose, basic assumptions and related possibilities will be presented (such as
switching between the implicit and explicit integration technique). The Newmark’s Beta method will be also
used to evidence that the original form of equations implies necessary modifications to introduce the contact
displacement restrictions. This will be separately explained in a chapter dedicated to contact mechanics.

Furthermore, since the deformation history is “trapped” in a relatively small time period, a discussion on an
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appropriate time integration technique will be given. The attention is paid mainly to numerical stability and
numerical properties required to preserve energy in numerical simulations. At the end, the traditional
phenomenological manner of introducing viscous damping effect will be addressed and discussed from the

perspective of the thesis subject.

Chapter 5 — Microplane material model

An almost crucial part of the proposed numerical formulation is addressed in the this chapter. Namely, in order
to numerically simulate the real concrete response for severe impact loading, an appropriate constitutive
material description is provided in accordance with restrictions laid down by the First and Second Law of
Thermodynamics. Since the mechanical behavior of concrete implies a very complex microstructural stress
transfer mechanism, the microplane material model is found to be the most appropriate choice for the
constitutive definition. A discussion aimed to prove the benefit of the microplane model and the basics
theoretical assumptions are provided therein. Afterwards, an extensive discussion on the choice of appropriate
microplane stress and strain tensors is elaborated. The concepts of effective microplane components and the
microplane discontinuity function are included. Finally, as the rate dependency effect plays an especially
important role in impact loading, the respective influence is also introduced by means of the energy activation

theory.

Chapter 6 — Contact mechanics

The issue of mechanical interactions is introduced at the beginning of the sixth chapter. The chapter begins by
exposing the respective strong formulation of any contact problem (Signorini problem). Thereafter, the
discretization of the given governing equations is conducted. The method of Lagrange multipliers is elaborated
with the purpose of introducing the restriction in the solution space of kinematically admissible displacements.
Some difficulties related to time integration are also addressed. Furthermore, since the presents of friction plays
a special importance, its presence is taken into account by application of the phenomenological Coulomb
friction model. The chapter ends with an iterative solution strategy used for solving the resulting system of

equations.

Chapter 7 — Contact detection

An especially important part of the proposed numerical formulation lies in an almost “chirurgical” requirement
for detection of contact between bodies under collision. Therefore, it seemed reasonable to situate the contact
detection strategy in a separated chapter. Indeed, in order to accurately capture the frictional behavior on
contact interfaces, the contact detection phase should give a valid geometrical approximation of the contact
position (especially important in concrete perforation and penetration problems). It is necessary to point out
that the accurate computation of contact position is very important since a rough contact detection algorithm

can make the whole formulation extremely fragile. As a matter of fact, only one wrong contact detection can
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destroy the physical meaning of the numerical analysis. For this purpose, a detailed discussion of the adopted

global and local detection strategy is presented in this chapter.

Chapter 8 — Adaptive finite elements

Since impact loading may lead to a perforation of a body, the periodical finite element mesh adaptations are
needed. Due to a lot of complexities related to progressive three-dimensional mesh adaptations, this chapter
should be only viewed as an introduction to future related investigation. Namely, the FE adaptive strategy is
here discussed in order to replace the poor conditioned mesh with a new one with better properties. However,
some preliminary computations showed that penetration and perforation problems imply a special requirement
of robustness of the adopted mesh generation algorithm. Also, since the transfer data operator is expecialy
influenced by the discretization, an accurate adaptation in the cracking zone ought to be carried out. Namely,
the quasi-brittle failure represents a challenging task for the transfer operator that should preserve the discrete
nature of cracking during the mapping procedure of damage parameters from the old Gauss points to the new
appropriated one. In order to meet such requirement, the new mesh should somehow be in accordance with the
old mesh. This requirement directly increases the expectation of the mesh generation algorithm. All the

mentioned are appropriately elaborated in this chapter.

Chapter 9 — Computational aspects

The ninth chapter arises from the need to validate the proposed formulation. Namely, the chapter retains the
algorithmic structure of the program code developed according to the previously presented chapters. The
chapter also contains some opinions and discussions related to possible code parallelization. Namely, note that
the pretension of high mesh density around zones of special interest will lead to a rapid increase of
computational time. In particular, since the non-coupled systems of equations are spread over the entire
program code (vectorial operations); the author opinion is that implementing the OpenMP parallelization
technique is especially attractive. Such opinion can be appropriately justified by taking into account the

previously introduced computational phases and taking into account the perspective of their parallelization.

Chapter 10 — Numerical examples

The penultimate chapter embodies the whole thesis by demonstrating few numerical examples. In order to
validate the formulation, the numerical results are compared with the experimental data available in the
literature. Since there are well documented experimental observations of plain concrete beams under impact
loading, the numerical experiment is performed by simulating three-point bending failure. In particular, the
transitions between failure modes, attained at different velocity of impact, are observed and discussed. An
interesting overview of the numerical possibility to investigate the dynamics of fracture is also evidenced.
Furthermore, it is shown that the propagation of compressive stress wave can be used as an additional argument
for the validation of the presented but also similar numerical formulation. In all cases, the energy balance

diagram shows that the sum of mechanical energies is equal to the total energy (isothermal conditions), which
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confirms that the dynamic equilibrium has been reached. To illustrate the delivered adaptive finite element
strategy, the chapter ends with a numerical example of penetration of steal anchor into a concrete block. Due to
the large concentrated displacements in front of the contact/impact zone, the FE mesh is progressively adapted
to the occurred deformations. However, since the computations related to remeshing and refinement is
computationally expensive; the given example should be viewed only as a preliminary example which will

serve to define future research directions.

Chapter 11 — Summary and conclusions

The last chapter is dedicated to objective and subjective conclusions. The objective part refers to the validation
of the proposed numerical formulation and the subjective part refers to some conclusions on future expansions
of the formulation. The weak points of the proposed formulation are also discussed and, according to such

weak points, some preliminary directions for further activities are given.

Faculty of Civil Engineering, University of Rijeka, Croatia Page | 12



Chapter 2

Continuum preliminaries

2.1 Introduction

The subject of the thesis might be defined as fracturing of monolith concrete mass into discrete fragments as a
consequence of high-energy impact loading. However, in order to avoid the complex description of
fragmentation (Pandolfi & Ortiz, 2002), the development of the proposed numerical formulation starts with the
application of continuum mechanics (Bowen, 2007). By introducing the continuum concept, it is possible to
define tensor fields as continuous functions of spatial coordinates. In order to make this assumption acceptable,
the scale of observation must abide by the principle of representative elementary volume (REV) that also sets
up the limit of continuum mechanics applicability. The principle requires that in all REV cells the property on a
material macroscopic level should be defined as an average data of the property at the microscopic level. The
macroscopic material level is defined by a finite number of REV cells, further denoted as continuum point. By
contrast, material points refer to an infinite number of particles contained in the material structure and denote
microscopic material level. According to the REV principle, the impact event is monitored on the macroscopic

scale where all mechanical data are interpreted as average data of material points proximity. Since the subject
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of the thesis is placed in the framework of continuum mechanics, before proceeding with the development of

the related numerical description, it seems appropriated to give a basic overview of the continuum theory.

2.2 Finite strain

It is reasonable to expect that under high-energy impact the concrete body will suffer finite deformation,
translation and rotation. In order to numerically simulate the history of deformation, an appropriated and
accurate description of motion is inevitable. For this purpose, the basic concepts and mathematical relations of
finite strain kinematic are hereafter summarized. It must be stressed out that the presented relations, valid in

continuum mechanics theory, are also valid inside FE, as well.

2.2.1 Kinematics of finite strain

Consider an undeformed continuum body at time t = " occupying a geometric region B < %* denoted as °C
configuration. In order to track the spatial and temporal evolution of mater, a fixed rectangular Cartesian
coordinate system, with origin O and orthonormal basis £; (2.1), is attributed to position °C (Fig. 2.1). The °C

configuration is known as reference configuration (reference frame).

EJ:{él E, Es}T where J =123 (2.1)

In addition, suppose a force field that causes the continuum to move and deform. The change in configurations
is the result of the existing displacement field which is defined by a displacement vector u attributed to each
point in the continuum. Principally, each displacement vector u={us,u,,us}' contains two displacement
components characterized as rigid-body motion (translation and rotation) and deformation. During the time of
evolution, °C configuration suffers respective matter transformations governed by the fundamental laws of
physics. At an arbitrary time te[to,t;], the space occupied by the continuum body is denoted by 'C
configuration (Fig. 2.1), usually referred to as the current configuration (current frame). This frame is related

to a coordinate system with origin o and orthonormal basis &; (2.2).

&, ={¢ & &' where i=123 (2.2)
Before proceeding, it is opportune to discuss some geometrical aspects of the basis vectors in the reference
(2.1) and current configuration (2.2). First of all, note that due to the orthogonal property of covariant basis £,
and & their dot product with contravariant vectors £’ and &' is defined as (Bonet & Wood, 1997):
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where &’ and &/ are components of Kronecker o (2.4).

s L= y
TTl0 i i @4

The metric of the Euclidian space in °C configuration is characterized by the metric tensor E (2.5).

Iy

Similarly, the tensor & defines the metric in 'C configuration (2.6).

e=(§6)d'®@e =g ®e=(e'el)g®e=660® 6, (2.6)
From °C to 'C, the coordinate axes rotations are given by the dot product of basis E; and & as
E;é=aj=0ay, (2.7)

where ¢j; denote the cosines directions between the reference and current coordinate axes. The coordinate

system translation, between °C to *C configurations (Fig. 2.1), is given by vector j ={jy,j»,js} -

current configuration @ (B)

N

reference configuration B

i

N o
\‘\(a,
z

Figure 2.1 Lagrangian kinematics (description of motion from the reference to the current configuration)

In order to illustrate the kinematical aspect of motion (Fig. 2.1), consider a particle P < B in the reference
configuration with position vector X=XJEJ={X1,X2,X3}T. At the end of the deformation process, the related
particle p = @(B) in 'C configuration will be given by position vector x=xi&={x1,X»,xs}". Now, the particle

motion can be completely defined by function ¢ as
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x=p(Xt) V x,XeR®, (2.8)
where the mapping restriction is:

o(X,1):B> R V XeB. (2.9)

Within the deformation history, for each time t the parametric function ¢ contains the information of successive
particle P — B position. In such way, ¢ describes the path trajectory of particle P (Fig. 2.1). From the fact that
two material points cannot occupy the same space at the same time, it can be deduced that two distinct particles
can have the same position in any configuration and that in the given configuration two distinct points cannot
be located in the same particle. Consequently, the parametric function ¢ is unique and its inverse function exist

as

X=¢t(xt) V x,XeR. (2.10)

In other words, the deformation process can not involve tearing and interpenetrations of matter. Therefore, in
both cases the deformation mapping is defined by an injective function such as the one in Eqg. (2.8) and in Eq.

(2.10). Consequently, the inverse deformation mapping can be defined as (Bowen, 2007):

ol p(Xt)>B V XeB. (2.11)

Note that the functions (2.8) and (2.10) describe the same motion but under different circumstances. The first
one (2.8), describes the motion with respect to the so-called material coordinates and characterize material
particles in movement. Accordantly, the independent variables (X,t) are referred to as material variables. The
second one (2.10), defines the motion with respect to the spatial coordinates, focusing on a point in space. In
this case, the independent variables (x,t) are referred to as spatial variables. Following the standard notation in
continuum mechanics, the material description of motion is denoted as the Lagrangian description, and the
spatial description, as the Eulerian description. Traditionally, the uppercase letter is used to indicate material
coordinates and the lowercase latter to indicate the spatial coordinates (Crisfield, 1991; Bonet & Wood, 1997;
Crisfield, 2000).

Due to the fact that the event under consideration is non-linear, which implies an incremental-iterative solution
strategy with a considerable number of successive spatial configurations; it should be pointed out that the total
deformation should not be understood as a superposition of successive deformations between configurations.
This fact can be supported by imagining the existence of two neighboring mapping function ¢, : B — %* and

@2 : B — %% In this case, the total continuum deformation can be obtained as

P(X,1) = 0, (0, (X,1),1) = 0, o 0, (X,1). (2.12)
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It is clear that with a finite number of mapping functions, the total deformation is defined by composition of all
mapping functions in accordance with the given example (2.12). Obviously, the current deformation state is
clearly influenced by all previously deformation states. This is especially valid in case of materials like
concrete that “store” the information of their initial virgin state (path-dependency).

In order to proceed with the kinematical aspects of finite strains, the components of the position vector X, in

respect to basis K, in the reference configuration, are introduced as

X=X, E;. (2.13)
Analogically, the position x related to basis &; in the current configuration is given as

A

X=X€. (2.14)

Note that a special attention should be paid to the selection of coordinate system that will be used for
measuring the motion of bodies. Namely due to the fact that the constitutive laws are often given in terms of
material coordinates (Bowen, 2007), the numerical formulation in question should be placed in the framework

of the Lagrangian description of motion.

When describing the motion in displacement terms, the vector u(X,t) that joins the position of particle P < B in
the reference configuration with its position p < ¢(B) in the current configuration, can be expressed in terms of

material coordinates as

or in terms of spatial coordinates as
U(x,t)=U, E,. (2.16)
Usually, the displacement field u(X,t) is defined by
u(Xt) =b(Xt) +x(X,t)-X  or U =aby + X — oy X5, (2.17)
and the displacement field U(x,t) expressed in terms of spatial coordinates by
U(x,t) =b(x,t) + x — X(x,t) or U; =bj +azx — X,. (2.18)
When using Eqg. (2.7), u(X,t) can be related to a spatial coordinate by

Ui ZaiJUJ y (219)
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while U(x,t) can be related to material coordinates through

Knowing that
& =ayk;,

it can be demonstrate that the field u(X,t) is associated to U(x,t) via

u(X, t)=u,é, =u; (e, E;)=U,E, =U(x,t).

(2.20)

(2.21)

(2.22)

In order to simplify the description of finite strain, it is a usually practice to assume that the coordinate basis E,

(2.1) and &; (2.2) coincide. In such case, the continuum motion is monitored from a single coordinate system

(Fig. 2.2) and, as a consequence, the coordinate system translation disappears (j=0).

reference configuration B

u(X+dX)=u(X)+du

current configuration (p(B)

Figure 2.2 Lagrangian kinematics (deformation of a material line segment)

With coinciding basis, the dot product in Eq. (2.7) becomes Kronecker ¢ (2.23).

EJ éi =5iJ =5Ji

Therefore, the filed U(x,t) can be rewritten as

U(Xt)=x(Xt)-X  or U =% —0y X;.

Similarly, u(x,t) in Eqg. (2.17) can be calculated by means of

u(x,t) =x—X(x,t) or U;=05;%—-X;.

time t>0

base configuration

z Se— -

(2.23)

(2.24)

(2.25)
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Since the collision event is obviously time-depended, the rate of change of mechanical quantity should be taken
into account. For this purpose, assume a tensor or scalar quantity q(X,t) defined in material coordinates X at

time t. The rate of change is well defined by

Dy

q(x.t) = ot

(2.26)

where the notation D-/Dt denotes the so-called material time-derivative, and it is commonly introduced to
distinguish it from the spatial time derivative, traditionally indicated by ¢-/ot (Belytschko, Liu & Moran, 2001).
According to Eq. (2.8), the material time-derivative of q(x,t) is given by definition as (Bonnet & Wood, 1997)

. Dg _ . gq(e(Xt+At)t+At) —q(e(Xt)1)
X,t)=—= lim ,
ax.t) ot~ Am. At (2.27)
with the derivative structure:
. _Dg _oq(x,t)  oe(X,t) oq(x,t)  oq(x,t)
D=5 ="a " a ox _ a vorada (2.28)
%,_/

\

The first term on the RHS denotes the spatial time-derivative and the second one denotes the so-called
convective influence that describes the change of spatial position of a particle with velocity v(X,t) and material
coordinates X (2.13).

2.2.2 Deformation gradient

Suppose that the movement from °C to 'C configuration (Fig. 2.2) causes the continuum to suffer deformation
that results in change of its shape and/or size. In order to quantify the deformation at an arbitrary particle P

B, the changes of its neighboring particle Q < B should be considered (Fig. 2.3).

Assume that the line segment dX (connecting the particles P < B and Q < B in reference configuration) and the
line segment dx (connecting the related particles p < ¢(B) and g < ¢(B) in current configuration) are relatively
small, making the differential calculus possible. The absolute position of a particle Q in the reference
configuration is defined by X+dX, and in the current configuration by x+dx. The change in distance
(stretching) may be measured by expressing the current position x+dx in terms of its reference position X+dX

and adding the contribution of the respective displacement u (2.29).

X +dx = X+dX+u(X+dX) (2.29)

The line segment dx can be further expressed as
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dx = X —x+dX +u(X+dX)=dX+u(X+dX)—-u(X),
du

(2.30)

and upon introduction of the differential notation du, by

dx =dX+du. (2.31)

In this Eq. du denotes the relative displacement vector of particle Q in respect to particle P. According to the
continuum principles (Bowen, 2007), the continuity of the displacement field allows to apply the Taylor series
expansion around particle P in order determine the value of du in the immediate vicinity of Q. By ignoring

higher-order terms, u(X+dX) in Eq. (2.30) is approximated as
u(X+dX) =u(X) +du= u(X)+uv, dX. (2.32)
Eqg. (2.31), that links the line segment dx to the line segment dX, can be rewritten as
dx =dX +du=dX+uv,dX =[ 1 +uv,] dX. (2.33)
%/_/ .

F

The term in brackets can be represented in a compact form by introducing the symbol F, such that

dx = FdX. (2.34)

F denotes a second-order tensor quantity which is traditionally called deformation gradient matrix. It follows
that F represents the gradient of the mapping function (2.9) that describes the continuum motion from °C to 'C
configuration (2.8). It can be also said that F “lives” in both reference °C and current ‘C configuration,

therefore, it is usually referred to as two-point tensor (Zienkiewicz & Taylor, 2002).

As a fundamental quantity in finite deformation analysis, F defines the local deformation around the particle P
< B by transforming the neighboring infinitesimal line segment dX into the respective line segment dx in

current configuration (2.35).

dx, dX;
dx =<dx, p = FqdX, r=FdX (2.35)
dx, dX,

By using indicial notation, F can be written as

OX; oy,
Fy=—+=0; +—+,
VT, T T, (2.36)
from which it can be deduced that the tensor structure contains derivatives dx={x;,x,s}" With respect to the

components of dX={X1,X,,Xs}", all of which are arranged in Jacobian format (2.37).
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o JOX, %)X, ox/oXs] [L 0 0] [au/oX, ou/oX, ou/oX,
% JOX, %)X, X)OXs| [0 O 1| |ous/oX, ouy/oX, us/oXs

Since the mapping (2.11) is unique, the deformation gradient inversion is valid (2.38).

dX = Fdx (2.38)
Fis given as
oX ou
Fo=2 5. 4 20
1j aXJ- 1j an (2.39)

or, by expanding tensors components, as

5 OX1 /0% OX/OX, OX /0% | |1 O O] |du/ox 0Ou /X, Ouy/OXg
OX3/0% OX3/OX, OX3/0%g| [0 O 1| |0ug/dx, Oug/OX, Oug/OXg

Resuming, the gradient deformation matrix F enables the transformation of a material line segment from one
configuration into another (2.35), appropriate one, and vice versa (2.38). Note that the mapping is linear, so F
can be interpreted as a linear affine operator. Following the traditional practice in continuum mechanics, Eq.
(2.35) is usually denoted as push forward operation and Eq. (2.38) as pull back operation. The reciprocal
operations are possible due to the nonsingular property of F. To illustrate the consequences of this property,
consider an infinitesimal volume dV in reference configuration and an infinitesimal neighborhood X+dX. The
volume dV is defined by the parallelepiped product

dV = (dX® x dX®) dx®, (2.41)

or by matrix determinant as:

dVv =det( dX® | dX@ | dx®). (2.42)

dX' denotes the vectors on the dV edges with i=1..3. The related volume dv, situated in the corresponding

spatial neighborhood, is defined with the triple product

dv = (dx® x dx®) dx® (2.43)

or, analogically to Eq. (2.42), with the following matrix determinant (2.44).

dv =det (dx® | dx® | dx®) (2.44)

According to Eq. (2.34), the next few assortment steps establish the relation between dv and dV (2.45).
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dv=det(dx® | dx@® | dx®)=det(FdX® | FdX® | FdX®)=...

(2.45)
..=det(F (dX® | dX®@ | dX®))=detF det (dX® | dX® | dX®)=detF dV
It follows that the ration between dv and dV is defined through detF via (Bonet & Wood, 1997)
dv Yo,
— =detF(X,t)=J(X,t) = 2.
Y (X,H)=J3(X1t) s (2.46)

In this Eq., J denotes the so-called Jacobian of deformation and links the continuum mass density po to p in
reference and current configuration, respectively. Since ¢ is injective (2.11), the linear mapping is locally one-
to-one at X in time t, if:

J(X,t)>0. (2.47)

Eqg. (2.47) is usually interpreted as the local invertibility condition, and ensures that the material volume

element remains positive throughout deformation history.

2.2.3 Multiplicative polar decomposition

For a displacement field with inhomogeneous property (Nam, 2004), which means that F does not depend on
its position on the continuum (i.e. material coordinates X), the deformation from °C to 'C is partly deformation
and partly rigid-body rotation. This is due to the fact that:

X=FX+]j, (2.48)

where the translation vector j stands alone and so has no contribution on the deformation. The information
about continuum deformations and rigid-body rotations are contained in the deformation gradient matrix F. In
order to separate the deformation from rigid-body rotation, the polar decomposition theorem ought to be
introduced. Since F is non-singular and positively definite second-order tensor, the polar decomposition is a

valid operation and can apply on the basis of the next theorem.

For any non-singular second-order tensor F there exist unique positive definite, symmetric second-order tensor

U and v, and orthogonal second-order tensor R such that F=RU=vR.

Like every orthogonal tensor, R has the property

RRT =1, (2.49)

while the symmetric tensors U and v have the well-known characteristics:

U=U" and v=v'. (2.50)
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According to standard notations, v denotes the left stretch tensor, U the right stretch tensor while R denotes the
material rotation tensor. The tensors are linked by means of multiplicative polar decomposition theorem, given
as (Bonet & Wood, 1997)

F=RU=\R. (2.51)

The problem of decomposition can be now formulated as follows: If for a given F the deformation contained in
U and the rotation in R must be determined, it is necessary to separate U or v (or even R) from the known F.

The problem can be solved by introducing the next lemma.

To any symmetric, positive definite second-order tensor T there correspond a unique symmetric, positive
definite second-order tensor U such that U°=T.

According to lemma, U? can be related to F'F due to the fact that such product generates a positive definite
second-order tensor. The tensor product will be attributed to a new tensor C (2.52), which will be appropriately

discussed later on.

U?=UU=UU=UR'TRU=F'F=C (2.52)

The problem is now reduced to determining the square root of U? since it is related to R through F (2.53).

F=RU where U=+C=+F'F (2.53)

According to the spectral decomposition theorem, the square root of C can be calculated by the eigenprojection
procedure (Hirota, 2002). For the sake of introducing the mentioned procedure, suppose that A%, A% and A%
indicate the eigenvalues of C, and [ N; N, N3] the related eigenvectors. In such case, the following equality is
valid (2.54).

A 0 0
C[N; N, N3J=[N;, N, N;J|0 23 0 (2.54)
0 0 A3

Being C and U? symmetric and positively defined tensors, and being %; positive real numbers, the tensors can

be rewritten by adopting the spectral decomposition theorem as (Marsden & Hughes, 1983):
3 3
C=Zx$Ni® N,  and U2 =Zx$Ni® N,. (2.55)
i=1 i=1

Furthermore, the next few assortment steps (2.56) demonstrate that the tensors C and U? have the same
stretching directions N; (Hirota, 2002).
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3 3
U2 =Z:(xiNi ®N;) (AN, ® NJ.)=Z:MJ.(Ni ®N;)(N;®N;)=...

i,j=1 i,j=1
3 3
= MR ((N;® NN ® Ny ) =D AA((N;® N )N, ® Nj)=...  (256)
i, j=1 i,j=1
3 3
i,j=1 i=1

Since the tensors basis do not change, it is clear that A; can be interpreted as principal stretches and N; as
principal stretches direction of the unknown tensor U (2.52). It follows that U can be calculated by performing

the spectral decomposition of C (2.57).

3 3
u:in*Ni@)Ni where A =A" and c:Zx}“*Nic@Ni (2.57)
i=1 i=1

Resuming, the multiplicative polar decomposition of F is obtained by performing the spectral decomposition of
C, where the calculated eigenvalues of C represent squared eigenvalues of U. As it was illustrated (2.56), the
principal stretches N; of U and C are the same. The same conclusion can be reached by nothing that
(Brodersen, 2004)

vi=FFT, (2.58)

which is an alternative to (2.52). From the geometrical aspect, the polar decomposition can be interpreted as
follows. According to Eq. (2.45), the material line segment dX in the reference configuration is transformed

into a line segment dx in the current configuration by linear affine mapping (2.59).

dx = FdX = R(UdX) (2.59)

The multiplication UdX stretches dX by the factor ; in the direction of the principal axis N;, and then the
second multiplication rotates the material line segment dX to its current configuration. However, note that
(2.60) is also valid.

dx = FdX = v(RdX) (2.60)

In this case, the material line segment dX is first rotated by R and then stretched by v, reaching the same
current configuration dx, as defined by Eq. (2.59). A conclusion may be drawn: the current configuration will

be always the same regardless of which one is applied first, the rigid-body rotation or deformation.
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2.2.4 Strain tensors

Suppose a continuum body immersed in an inhomogeneous displacement field u. Under this circumstance, the
continuum body suffers change in shape and/or volume. In order to quantify the deformation, the deformation
tensor should provide information on length alteration of the infinitesimal material line segment with respect to
the difference in its material and spatial configuration. Resume, the deformation gradient matrix (2.37)
performs the mapping of the material line segment form the given configuration to the neighboring one (2.35).
Obviously, the rigid-body rotation R present in F is not a measure of deformation. As a consequence, the
crucial requirement for any deformation tensor is that it must be able to isolate the pure deformation and to be

immune to rigid-body rotation. Such requirement implies that the tensor should be a priori symmetric.

2.2.4.1 Green-Lagrangian strain tensor

A measure of deformation is obviously contained in U or v. In order to isolate the deformation from rigid-body
rotation, a proper operation on F should be carried out. Indeed, since the material rotation tensor R is
incorporated in F, and its presence is undesirable, its influence should be removed. For this purpose, note that
the tensor orthogonal property (2.49) indicates that the R followed by its transpose, or vice versa, defines the
identity matrix 1. It can be deduced that the rigid-body rotation can be excluded from F by simply multiplying
F by its transpose F'. The operation will produce a symmetric tensor that is here required. The abovementioned
tensor (2.52) is the so-called right Cauchy-Green deformation tensor C (2.61). Mention that C can be also
obtained by squaring U (2.52).

C=F'F=U'U=U* or cu=aﬁd=g%§%- (2.61)
Note that six independent deformation components are referred to as reference configuration (material
coordinates) and can be determined from the non-interdependent nine components of F. Note also that the
backward operation (from the given tensor C to F) is not possible. A similar deformation tensor can be
obtained by performing the inverse multiplication of the abovementioned (2.61). In this case, the generated

tensor will be the left Cauchy-Green deformation tensor b (2.62), also referred to as left stretch tensor v.

b=FF"=v'v=v? or b K=o
X, Xy

]:FiKF

(2.62)
The tensor components are obtained in respect to the current configuration (spatial coordinates) and it is why
the backward operation from the given tensor b to tensor F is not possible. In both cases, Eq. (2.61) and Eq.

(2.62), the deformation tensors represent a link between the squared line segment dl in the current configuration
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and the square of its related line segment dL in the reference configuration. In order to measure the
deformation, the square of the line segment in the current configuration is introduced as (Lehmann, 2008)

(dl)2=dxkdxk=§%§%dxldxj or  (dl)?=C,,dX,dX,. (2.63)

| J
On the other hand, the square of the line segment dL in the reference configuration is given by

X X

OX;  OX;

(dL)?=dX dX, = ddx;  or  (dL)*=bYjdxdx;. (2.64)

Before proceeding, let’s recapitulate. The deformation tensors (2.61) and (2.62) represent in what way the
square of the line segment is linked between its current and reference configuration. In order to define the strain
measure, the change in length of the square line segment should be examined. So, in the reference

configuration the length of the vector dX may be defined as the dot product with itself (2.65).

(dL)?=dXdX (2.65)

Analogically, the length of the vector dx will be
(d1) %= dxdx. (2.66)
As the interest is here paid on the difference between them, the following Eq. ought to be introduced (2.67).
(dL)?—(dI)%=dX;dX; —dx;dx; (2.67)
Suppose that the measures of material squeezing (2.67) is defined as (Bonet & Wood, 1997)
(dL)?=(dI)*=2dxE;dx; , (2.68)
where Ejj denotes an unknown strain tensor. Eq. (2.67) can be rewritten from Eq. (2.68) as

and, since dX;F=dx, and FdX;=dx, after replacing the index k with the index i, the following equality can be
obtained (2.70).

The strain definition in Eq. (2.69) can now be rewritten as

which directly leads to tensor E expressed in terms of deformation gradient components (2.72).
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1
Ejj :E(Fkiij - 3) (2.72)

The derived second order symmetric tensor is the Green-Lagrangian strain tensor E which gives the
information about stretching of the material line segment dL, regardless of the line segment rigid-body rotation.

In accordance with Eq. (2.72), the components of E are given as

2 2 2
LR S P it Q=
oX;  2[\ 0X; oX, oX,
. Ou;
1f ou; LM +E ou, ou, +au2 ou, +au3 Oug i x|
2(0X; 0X;) 2]0X;oX; OX;oX;  OX;0X;

Note that for infinitesimal small strains, for which the reference and current configuration almost coincide, the
components of Green-Lagrangian strain tensor E are reduced to the “naive” engineering strain definition s. It
should be stressed out that in the proposed numerical formulation the Green-Lagrangian strain tensor plays a
crucial role due to the fact that its presence in the adopted constitutive description is inevitable. The statement

will be properly supported later on (Chapter 5 — 5.4 Microplane strain tensor).

2.2.4.2 Material strain tensors

As the continuum under consideration is of nonpolar type (Boltzmann continuum), a family of strain tensors

E™ can be retrieved from the general strain notation given as (Basar & Weichert, 2000)

l[Um—l] for m=0
EMuy=] M (2.74)

InU for m=0,

where m represents an arbitrary positive integer number. Depending on m, Eq. (2.74) generates a strain tensors
universally denoted by E™. As the strain measures obtained in this way are related to right stretch tensor U
(which is attributed to the reference configuration), their measure will refer to the continuum state in the

material configuration. A set of corresponding strain tensors is presented in (2.75).

Green - Lagange straintensor : m=2 : E@=E =05(U>-1)

Biot material straintensor : m=1 : EY=B=U-1 (2.75)

Hencky material strain tensor : m=0 : EQ@=H=InU

The same sets of tensors can be obtained by the generalized form of Eq. (2.74) given as
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1
2m

EMU)=——[um-1]=3

1 3
o (A" -1) N, ®N, . (2.76)
i=1

In this case, m denotes an arbitrary positive or negative integer number, A; represents the eigenvalues of U (i.e.

principal stretches) while N; represents eigenvectors of U (i.e. principal stretching directions).

2.2.4.3 Spatial strain tensors
A family of spatial strain tensors can be also introduced by (Basar & Weichert, 2000)

l[vm—l] for m=0
eM(y)=,m 2.77)

Inv for m=0,

with m as a negative integer number. A set of corresponding strain tensors is presented in (2.78).

Almansistraintensor : m=-2 : e®=a=05(1-Vv?)
Biot spatialstrain tensor : m=-1 : e®Y=b=1-v (2.78)

Hencky spatialstraintensor : m= 0 : e©@ =h=Inv

Since the given strain measures are related to the left stretch tensor v they represent the strains in the spatial

configuration. The same sets of tensors can be obtained by the generalized form of Eq. (2.77) given as

3
M= [ven 4 1e S Loy N eN
e (v) 2m[v 1] Z_;Zm(x. DN, ®N,, 2.79)

where A; represents the eigenvalues of v and N; the related eigenvectors.

2.2.4.4 Velocity gradient tensor

By definition, the velocity gradient tensor | is the partial derivative of the velocity field v(X,t) with respect to
the spatial coordinates (2.80). Therefore, | will describe the velocity of transition between the material and

spatial continuum configurations (Bonet & Wood, 1997).

ov(X,t
It is also known that | can be retrieved by manipulation of the time-derivative of F (2.81).
_AfX)_O[X)_ N _NXK_ g here |=FF (2.81)
dt\oX/) oX\ot) oX oxoX
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2.2.4.5 Rate-of-deformation

In most cases, but especially under severe impact loading, concrete failure takes place in extremely short period
of time (Bentur, Mindess & Banthia, 1986). Consequently, the temporal change in deformation, from the initial
standstill configuration throughout the deformation history to the finial standstill configuration, is considerable.
This fact would not be of any interest if concrete would demonstrate no sensitivity to the rate-of-deformation.
However, the reality is exactly the opposite. The experiment confirmed that at loading rate out of static or
quasi-static range (impact load); the concrete mechanical behavior is especially influenced by the rate-of-
deformation (Sukontasukkul & Mindess, 2003). Accordantly, the constitutive model used for numerical
simulation should be sensitive on a rate-of-deformation. A proper discussion on that subject will be given later.
Before that, the rate-of-deformation should be introduced.

The rate-of-deformation tensor can be retrieved by taking the time-derivative of the scalar product

where the line segments FdX; and FdX,, in the reference configuration are related to line segments dx; and dx,
in the current configuration, respectively. Given that E=(1/2)(C-I), the time-derivative of Eq. (2.82) reads:

d . )
o (A de) =X, € dX, = 20X, EdX,., (2.83)

By introducing dX;=Fdx; and dX,=F"dx, into the former expression, it can be rewritten as

1d T
Ea(dxldXZ) =dx, IF TEF? |dx2, (2.84)

d

where the term in brackets represents the rate-of-deformation tensor d which is the symmetric part of the

velocity gradient tensor | (2.85).
1 1
d=sym(|):§[I+IT] or d; =§[vi,j+vj,i] (2.85)

The antisymmetric (skew-symmetric) part of | is known as spin tensor w given as (Brodersen, 2004)

1 T 1
W=SkeW(|)=§[| -1 ] or W; ZE[V” —vjyi], (2.86)
and it describes the rotation of a material particle around a certain point. Concluding, the rate-of-deformation
tensor d measures the rate of change of a square material line segment dx. It should be pointed out that the time
integral of d does not vanish in the reversible cycle of deformation and, as a consequence, d is path-depended

(Belytschko, Liu & Moran, 2001).
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2.2.4.6 Tensors and objectivity

The meaning of objective tensor (frame-indifference principle) represents a fundamental concept in continuum
mechanics and has a particular importance in development of material constitutive models (Bowen, 2007).
Namely, it is clear that the constitutive law should not depend on the choice of the place from where the
continuum movement is observed. In order to illustrate the tensor objectivity concept, consider the definition:
Any second order tensor T is objective only if its transformation from the current configuration to the

configuration where it is denoted by T~ is in conformity with

T =RTRT, (2.87)

where R represents the previously introduced material rotation tensor (Bonet & Wood, 1997).

In order to dispose with an invariant type of the constitutive description, the objectivity requirement must be
met with regard to any further adapted strain and stress tensor. According to the rule in Eq. (2.87), any second-
order tensor can be tested for objectivity (Lai, Rubin & Krempl, 1993). At the moment, mention that the Green-
Lagrangian strain tensor E, and the rate of deformation tensor d have this key tensor property. Nevertheless, in
the proposed numerical formulation both quantities have special importance (Chapter 5 — 5.4 Microplane

strain tensor).

2.2.5 Cauchy’s stress theory

Before moving onto the next topic regarding conjugate law, it seems opportune to introduce some aspects of
the Cauchy’s stress theory (Brodersen, 2004). For this purpose, Fig. 2.3 illustrates the continuum body B that in
time t=0 occupies the geometric region Qo bounded with the boundary 6€,. Suppose that the body B is
influenced by volume and surface forces that cause the continuum to move and deform. Furthermore, following
the academic strategy of introducing the concept of stresses, the body in movement is truncate in two sections
(Fig. 2.3). It is assumed that certain internal forces, that substitute the missing part of the continuum, exist on
the generated surfaces in order to keep force balance. Furthermore, imagine an elementary surface ds < 0Q on
the cross section in the current continuum configuration. The direction of ds is defined through the normal unit
vector n. On the other hand, in the reference configuration, dS < 0Qy denotes an elementary surface with its

normal unit vector N.

The df part of the total force f, that acts on the continuum cross sections, can be related to the elementary
surfaces ds and dS. The Cauchy postulated says that the relation in Eq. (2.88) is valid for each elementary

surface in the continuums body (Brodersen, 2004).

df =tds = TdS (2.88)
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current configuration ¢ (B)

reference configuration B ¢
N
a5 >
A

Q,
time t=0

time t>0

Figure 2.3 Stress vectors in the reference and current configuration
In this expression t denotes the Cauchy traction vector and T the 1% Piola-Kirchoff traction vector. In the
Cauchy’s theorem of stresses, there exists the stress tensors ¢ and P, linearly with n and N, and valid for
(Truesdell & Noll, 1992):

t(X!t;n) = G(X,t)n s ti = o-ljnj ,

(2.89)

TOXEN)=POXEH)N ;T =RByN,.
The stress tensor ¢ denotes a symmetric tensor, called Cauchy stress tensor (related to the reference
configuration) and P represents the non-symmetric 1% Piola-Kirchhoff stress tensor (PK1). PK1 is a dual type
tensor due to the fact that the index i refer to the spatial coordinates while the other index J refers to the
material coordinates. Note that if the continuum body rotates, without generating change in stresses, PK1 and o
will vary with material orientation. In order to examine the relation between ¢ and P, the Nanson’s formula,

which links material line segments dl and dL, is introduced (2.90).

dl=JFTdL (2.90)

Introducing the line segments dl and dL into Eq. (2.89), so that:

t(x,t,n) =T(X,t,N), (2.91a)
o (X, t)ndl = P (X, t) NdL, (2.91b)
o (x,t)dl =P (X,t)dL, (2.91c)

and by substituting Eq. (2.91c) in Eqg. (2.90), it can be obtained that
c=JPF', (2.92)
for the Cauchy stress tensor o, and

P=JoFT, (2.93)
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for the 1* Piola-Kirchhoff stress tensor P (Brodersen, 2004). Note that the term Jo on the left side of the former
expression is usually referred to as Kirchhoff stress sensor z. In case of small deformations (small
displacements), 7 is reduced to ¢ (2.93) since J = 1 (2.94).

T=Jo (2.94)

Note that P is asymmetric and as such not suitable for any conventional constitutive model. However, a
quantity called 2™ Piola-Kirchoff stress tensor (PK2) and denoted by S is defined in material coordinates and is
suitable for the formulation of constitutive equations. Namely, PK1 is a dual type of tensor that owns its
asymmetric property to tensor indexes relation with different configurations. On the other hand, PK2 corrects
this impropriety by the pull-back operation (2.38) in the contravariant tensor field = (2.94) giving

S=JF1eF T, (2.95)

which also illustrates the direct relation between S and 6. From the aspect of the well-known stress definition,
one can say that the Cauchy stress tensor o associates forces with the surface area in the current configuration.
Due to its physical meaning, this property makes ¢ also known as the true stress tensor. On the other hand,
PK1 relates the forces in the current configuration with the areas in the reference configuration. It is evident
that in this case a physical meaning is missing. Similarly, PK2 relates the force in the reference configuration
with a surface area in the current configuration (Ruigomez, 1985). In this case the physical meaning is also
hard to interpret but, as being a symmetric tensor, its benefit is evident in the formulation of material

constitutive models.

Finally, the so called back-rotated Cauchy stress tensor s should be also introduced since its presence in the

proposed numerical formulation is inevitable. The stress measure is defined by Eq. (2.96).

s=R'6R (2.96)

The back-rotated Cauchy stress tensor s is linked to an imaginary intermediate configuration, where is defined
by stretching U before the rotation R is applied. In other words, s is expressed in terms of components in a
coordinate system that follows the continuum motion (Belytschko, Liu & Moran, 2001). Its importance in the

proposed numerical formulation will be discussed later (Chapter 5 — 5.3 Microplane stress tensor).

Before proceeding, it is opportune to introduce the traditional Voigt notation (Zienkiewicz & Taylor, 2002);
adopted to simplify the equations delivered in the framework of FE. Namely, since the tensors under
consideration are symmetric tensors, the six independed components are rewritten in compact form by

regrouping them as is illustrated in (2.97).

Voight _ T
‘_’—{0'11 Oy O33 O1p Oy 513} (2.97)
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2.2.6 Conjugate law

Generally, the internal system energy can be always expressed in terms of system internal state variables. For
continuum deformation analysis, the internal energy can be defined as a product of internal force with related
displacements. Therefore, force and displacement form work-conjugate pair. To discuss the work-conjugacy
importance, resume that the displacement field is related to external loading through a system of fifteen
differential equations, where six of them are attributed to the material constitutive model. Furthermore, assume
that the constitutive equations are expressed in terms of stress and strain. In order to preserve the system
energy, the stress tensor (force norm at the elementary surface) and the adopted strain tensor should be work-
conjugate (Bonet & Wood, 1997). Only in this way an eventual energy perturbation, related to a material
constitutive model, can be avoided.

To illustrate the principle, imagine an elementary volume under compression. In this case, the pressure force
can be generalized by the stress tensors ¢ while the change in volume by the volume V multiplied with the
strain tensor ¢. The related mechanical work dw, as result of a stress-induced infinitesimal strain dg, can be

calculated as

where ¢ and & represent a work-conjugate pair (2.99).

o < Workconjugate o (2.99)

Generalizing, for any strain measure E™, the related work-conjugate stress tensor T™ should be chosen in the

way that the stress power per unit volume complies with (Lubarda, 1999)

T . g g g (2.100)

in which 7 (2.94) and d (2.85) represent the earlier introduced tensors. According to the former equality, the
following, here important, stress-strain conjugate pairs (2.101) are retrieved by changing the value of m in Eq.
(2.74).

S work conjugate E

(2.101)

Js work conjugate H

It should be mentioned that the use of a non-conjugated stress-strain pair is sometimes inevitable. In fact, to
numerically simulate complex material behavior, one may need to decide whether to preserve the work-
conjugacy or to retain tensors pairs that does not fit well in Eq. (2.100) but poses physical meaning which is
obviously an important requirement. The mentioned reflects the here present compromise situation that will be

discussed later on (Chapter 5 — 5.4 Microplane strain tensor).
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2.2.7 Generalized Hooke’s law

It is well known that the Hooke’s law of elasticity defines the relationship between stress and strain in the
displacement range where the o-¢ relationship is linear. Furthermore, as a prerequisite for linearity, the strain
energy function W should be homogeneous and quadratic function of strain components with coefficients that
increase proportionally with the increase of deformation. Particularly, W(g)>0, and for no continuum

deformation, W(1)=0. In such case, W can be written for Hooke material as (Lehmann, 2008)

W :%Cijldgij 8k| Where i, j, k,l =1,2,3. (2102)

The first derivation respect to strains will lead to the proportionality of ¢ respect to ¢ as

ojj = w 2.103
e (2.103)
while the second derivative will give the fourth-order stiffness tensor Gj, with 81 components (2.104).
o°W
Ciy=—"—" 2.104
ijkl agij agkj ( )
The linear 6-¢ constitutive relationship is then given by
oij = Cija & - (2.105)
Since the order of differentiation should not matter, the Eq. (2.106) holds.
Cij = Cyij (2.106)
According to gjj = gji, EqQ. (2.107) is also valid.
Cii = Cij (2.107)
Finally, & =¢) S0 Eq. (2.108) is also true.
Cija = Cij (2.108)

All these symmetries reduce the final number of independent components of G to 21. For a general anisotropic
material, o and € can be now related in compact form by rewriting the stress and strain tensors in a vectorial
notation (Voigt notation). In this case, the obtained system of Eq. represents the generalized Hooke’s law of
elasticity (2.109).
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s / ‘/ / a s n
o1 Ciunn Cup Cuzss Cup Cips Cias| | én
Oy : Corm Coszs Cpip Cop Cons | |€2
O33 : : Caza3 Caap Cazzs Cazis | | 633
= . (2.109)
Oy, : : : Ciip Cins Ciaz | |61
O3 : : : : Croz Coaiz| |€23
O3 | Sym . : : : Cias | €13

Nevertheless, the former system of Eq. is valid only for displacement gradients such as (Lehmann, 2008):

Ui iU <<Uj;, (2.110)

making the approximation uj; = du; /0.X; valid and enabling to write

1
g ~ By = S (U +Uj). (2.111)

In this case, °C and 'C configurations almost coincide. However, observe that for any magnitude of
deformation, Eq. (2.111) is over-determined. In fact, 6 strain components are related to 3 displacement
components. In order to obtain a unique solution, an additional condition is imposed on the strain components.

The linear strain compatibility equations (2.112) provide the needed restriction.

62511+82522 _ 62'912 .9 52511 :ﬁ 5512+a‘913_5523

X O O OX, | DX OXg OX |\ DXy DX, OX

62522 +62533 _ 62523 . 82522 zﬂ Oty Oéyg +6523 2.112)
X X XDy | X OXg D\ Xy OX, O '
62533 62511 _ az531 -9 52533 zi 0&1, +5513 +5523

X2 OxE X D% | OX DXy OXg\ OXg DX,  OX

Before proceeding, mention that the principles contained in Eq. (2.103) and Eqg. (2.104) hold for non-linear

material, as well.

2.2.8 Hyperelasticity

As already mentioned (Chapter 1 — 1.1 Motivation), the main purpose of the thesis is to develop a numerical
formulation for concrete failure under high-energy impact loading. With the aim of validating such
formulation, the proposed numerical description is translated into a program code which offers the possibility
to investigate different types of collision (at low but especially at high loading rates). As far as the area of high-
energy collision is concerned, including large deformation in the description of occasionally elastic solids
seems logical. For this purpose, and since the Hooke’s law is valid only for the linear o-¢ relationship (2.110),

it is appropriate to introduce a briefly overview of material hyperelasticity.
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According to the general definition of hyperelasticity, the strain energy function W depends on F via

r
where, for the given deformation path I, W has the property that W(1)=0, W(F)>0 and (Brodersen, 2004)

W(F) >0 if det(F) > and W(F) >0 if det(F)—>0. (2.114)

Eqg. (2.114) denotes that an infinite amount of energy is required to infinitely expand the body and to compress
it to zero volume. Due to large elastic deformations, note that W should be also objective. This means that if the

reference frame rotates, W must be transformed by the same rotation (2.115).

RW(F)RT=W(RF) (2.115)
According to Eq. (2.49), the former expression can be rewritten as
W (RF)=W (F), (2.116)
that confirms the objectivity of W. However, for isotropic material, Eq. (2.117) should be also valid.

W(FR)=W(F) (2.117)

Furthermore, according to Eq. (2.103), P in Eq. (2.113) can be expressed as

p_W(EF) (2.118)
oF
The objectivity criterion implies that W depends implicitly on F through C (Brodersen, 2004). Hence
S=2 W (F) = W (F) , (2.119)

oC oE

where W is expressed as a function of E which is work-conjugated to S (2.101). To reproduce the linear elastic
response, the character of W mast be appropriately defined. The so-called Saint Venant-Kirchhoff model has
been adopted for this purpose (Bonet & Wood, 1997). The model is just an extension of the linear model to

non-linear regime and it is formulated as

W(E):%(tr E)? +utrE?, (2.120)
where 4 and u are Lamé constants related to Young’s modules E and Poisson ration v by

Ev E

A= m and H= 2(1+v)’ (2.121)

since it is assumed that the material is isotropic (2.117).

Faculty of Civil Engineering, University of Rijeka, Croatia Page | 36


http://en.wikipedia.org/wiki/Lame_constants

V. Travas§ — Dissertation Chapter 2 — Continuum preliminaries

Note that W (2.157) describes thermodynamic isothermal conditions with entropy production reduced to zero.
Consequently, it represents a perfect (ideal) elastic material for which the components of C (2.109) are given
according to Eq. (2.104) as

oA oW
Cijkl =2 = :

(2.122)

To conclude the constitutive description, the S-E relationship in the Saint Venant-Kirchhoff model is given by
(Bonet & Wood, 1997)

S = Atr(E)l +2uE. (2.123)

According to the usual notations, tr(-) in Eq. (2.120) and Eqg. (2.123) represents the trace of a tensor. It ought to
be pointed out that (2.120) is polyconvex type of function and so does not represent a reasonable criterion for
materials under compression. Indeed, if defF is equals to zero, which reflects total implosion of an elementary
volume, the components of E will be equal to -0.51 (see Eq. 2.72).

2.3 Conservation laws

It is well known that every physical event is governed by the fundamental conservation laws and
thermodynamic restrictions. Consequently, every numerical formulation delivered for the purpose of simulating
physical events must preserve the quantity prescribed by the conservation laws. For this reason, the

conservation laws are summarized as follow.

2.3.1 Conservation of mass

According to the basic principles of continuum mechanics, it is assumed that the mass m is continuous
functions of spatial coordinates in the volume V. In this case, the scalar values m and V can be related through
the density definition as

dm

= lim — .
P= 5o dv’ (2.124)

where dm denotes the mass of the infinitesimal volume dV. The total mass is simply given by

m= J-PdV’ (2.125)
\%

and in order to preserve the continuum mass, the material time-derivative of Eq. (2.125) should vanish
(Dm/Dt=0). According to the previously introduced (2.2.1 Kinematics of finite strain), m can be expressed in

terms of Lagrangian (m") and Eulerian (m) coordinates (2.126).
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m" (Vs t) = .f o (X,t)dX  and m(vx.t)=Ip*(X,t)dX (2.126)

Vx Vx

The material time-derivative of m” will lead to

Dm" (Vy,t) J- « . J’@p*(X,t)

Pm Vi) _ fim = X,t+dt)— p (X, )X | = | L2l dx . .

o i [p" (X t+dt) - o (X,1)] 2 (2.127)
X

Thus, the continuum mass will be preserved if (2.128) is true.

o (Xt) =0 (2.128)

ot
The aforesaid is obvious since the material in the Lagrangian control volume is constant. As the density p"(X,t)
depends on the Lagrangian coordinates X, its value will not change even if the coordinate system does. Note
that it is opposite to the Eulerian description of motion. From the Eulerian point of view, the material time-

derivative of the second integral in Eg. (2.126) produces

DMV _ jjm L

Dt disodt I p(x,t+dt)dx - jp(x’t)dx , (2.129)

vl Vx

where the first integral is calculated according to the volume Vy in time t. In fact, due to the continuum
deformation, the boundary S of the initial domain V, will reshape to become a new boundary S If the new

volume is denoted by V+AV, the former integral can be rewritten as

Dm(V,,t) _

oo = lim j [pxt+d) - px ) Jax |+ = [ (0 2.130)

vy AVX

where the domain of integration AV in the second integral represents the volume swept out by particles on the
surface S with velocity v(x,t). For this integral the infinitesimal volume dx is equal to v - n dS dt where n
denotes the unit normal outward vector on the elementary surface dS. On the other hand, the second integral

can be converted to a surface integral giving

DmV,,t) _ [op(xt) . 1 _[%qy 42
X _I " dx+a“-p(x,t)v'ndS_IEdV+EIPanidS’ (2.131)
\% S

Sx

from where the relation (2.132) can be obtained by applying the divergence theorem.
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op  o(pvy) Do oV,
—+——==0 or —+p—=0
o ox Dt ox, (2132)

The former Eq. is usually called equation of continuity and it ensures the mass conservation by providing that

the material time-derivative of m is zero (in the Eulerian frame).

2.3.2 Conservation of linear momentum

From the 2* Newton’s law, the linear momentum changes only if a force F acts on a body (2.133).

F =ma (2.133)

For a body immersed in a gravity field, the weight w is a vector function related to body density as

w = pb, (2.134)

in which b denotes the vector of volume forces. Therefore, for a given surface traction t on the elementary

surface dS, Eq. (2.133) can be rewritten as

Fo Ipde-i— jtds.

(2.135)
V(t) s(t)
By using Eq. (2.89), the former expression can be further restated as
_ T
F- jpde ; jc nds. 2,136
V(t) S(1)
If the following is introduced (Brodersen, 2004)
D
V(1)
Eqg. (2.133) can be expanded in terms of stresses on dS, producing:
baV + [e"nds =2 [ pvav
V(t) S(t) V(t)
In order to satisfy the equilibrium condition, Eq. (2.139) must be true.
T _
[ppav+ [oTnas -0 2.139)

V(t) S(t)

The Gauss divergence theorem applied to the 2% integral of the former Eq. will give
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Dv
jpde+ IondS: j(pb+Vc)dV:IpadV. (2.140)
V(1) S(t) V(1) v

Finally, the given volume integral will be true if (Belytschko, Liu & Moran, 2001)

pb+Ve=pa or pb +oy = pay, (2.141)

where a denotes the body acceleration. If a=0, the former Eq. represent the equilibrium equations.

2.3.3 Conservation of angular momentum
According to classical dynamics, the rate of change of angular momentum L is directly related to the torque T
via

T= d—L (2.142)
dt
As is well known, T is zero for a body in equilibrium. On the basis of the definition of torque, the conservation

of angular momentum can be expressed by expanding the concept in Eq. (2.139) over the entire body (2.143).

T= IrprdVJr Irxcnd8=0
V(1) S(t)

(2.143)

By applying the divergence theorem to the second integral in Eq. (2.186), and by generalizing (2.143) in

respect to local infinitesimal angular momentum, Eq. (2.143) can be arranged as follows (2.144):
T = Igijk ijbk dV+ jgijk XJ O-k| ni dS,
V(t) s(t)

T= J‘gijk X; pb + (& Xj 01) 1AV,

V(t)

T= jgijk(xjpbk +(Xj0u) )adv, (2.144)
V(1)

V(t)

V()

Since xj=0; and pb+ay,=0, the last expression together with the equilibrium condition T=0 lead to
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V()

Then, few assortment operations like:

Emi €ijk Okj = 0,

Elmi € jki Okj =0,

(2.146)
(5|j Ok — Ok 5mj) Oyj = 0,
Omil —Oim =0,
will finally leads to
=0, O ©6=0, (2.147)

which ensures the preservation of angular momentum, demanding the symmetry of stress tensor.

2.3.4 Conservation of energy

The energy conservation law will be presented by taking into account only mechanical energies in the system.

Therefore, the kinetic energy K of a moving continuum can be calculated as

1
K(t):szv vdv, (2.148)
\Y

and the work P done by volume and surfaces forces as

P(t) =jt - vdS +Ipb vdV. (2.149)

S \

The change in kinetic energy can be traced through the material time-derivative as

DK(t) i
Dt I dV I V_dV (2.150)

According to Eq. (2.141), the former Eqg. can be rewritten as
DK(t)
Dt JV (o, +po)dV, (2.151)

and since (ViO'ij),j:ViO'ij,j'f'Vi'jO'i, as
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DK(t)
thj[(viaij),j Vb, =Y, oy AV (2.152)
\%
By adopting the divergence theorem, the upper Eq. can be further restated as

DK(t
Dt v d v

where Dj; represents the symmetric part of v; ;. By introducing the notations:
S =Iaij Dy dv  where Dy =sym(v,;), (2.154)
\

it can be deduced that the mechanical power P, produced by external forces (2.149), is related to the change of
kinetic energy (2.148) and internal energy S. The relations are defined by (DK/Dt)+S=P, and denotes the

conservation of mechanical energies in the system.

2.4 Thermodynamic restrictions
In order to discuss the thermodynamic restriction imposed by the Second Law of Thermodynamics (entropy
production), the multiplicative decomposition of F (2.37) is introduced by
F=FF,, (2.155)

where F. denotes the elastic part of deformation (reversible part) and F, the plastic part of deformation

(irreversible part). In this case, the continuum deformation can be interpreted as follows. According to

FdX =F, (F,dX) = Rdx,, (2.156)

instead of moving directly towards the current configuration, the continuum moves across an imaginary
intermediate configuration (composed only by plastic strain) before it reach the current configuration.

Congruently, the additive decomposition of strains is valid (2.157).

E=& +&, (2.157)

To illustrate the consequences of thermodynamic restriction, assume that the material constitutive relations are
given in terms of z. The yield function is then expressed as a function of = (2.94) and q as material hardening
variable (Bonet & Wood, 1997). The variables = and g represent the state variables and define the yield

function Ey. as

EyeE{ (z.q) | f(z,q)<0 } (2.158)
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Note that due to material isotropy, the yield function (2.158) does not depend on the orientation of z. In this

case, the Helmholtz free energy function y (Nguyen, 2005) is given by

v =vy(b,£), (2.159)
and is a function of elastic part of the left Cauchy-Green deformation tensor
b, =F.F,, (2.160)

and the internal variable &, which is work conjugated to g (2.161).

oy

q= o

(2.161)

In this case, the free energy function y depends only on F and be. By ignoring the contributions of heat energy,

the dissipation function D can be expressed as

Dzr:d—%w(be,é)zo, (2.162)

and describe the principle of irrecoverable system energy due to plastic deformations. To obtain the time
derivative of v, note that b, lies in the intermediate configuration. For this reason, it should be transform
according to Eq. (2.62) in the following manner (2.163).

T -1 ~TET 1T\ T 1T
b,=FF =(FF,) (F, F)=F(F,F, )F =FC_JF (2.163)
The time derivative of b, can be now calculated as
. . . d __
b, =FCp1FT+FCp1FT+Fa(Cp1) FT, (2.164)

where the last term indicates the Lie derivative defined as (Belytschko, Liu & Moran, 2001)

F%(c;}) F'=1,b,. (2.165)

Resume that, the Lie derivative denotes the return of C,, to the reference configuration and, after performing its
time derivative, it pushes C, towards to the current configuration. Furthermore, the derivative of deformation
gradient in Eq. (2.164) can be related to the elastic part b, by

Y

F=—F
ox P

FF = %FF,;lF;TFT =IF,F] =1b,. (2.166)
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Using Eq. (2.165) and Eq. (2.166), Eq. (2.164) can be rewritten by separating its elastic and plastic part as

b, =Ib, +b, "+ 1 b, .

) (2.167)
elasti part plastic part
The dissipation function D in Eq. (2.162) may be now rewritten in terms of b, such that
dy . dy
D=r:d-—:b,——- &, :
T e g (2.168)
while according to Eq. (2.161) and Eq. (2.167), as
. dy . T :
Dzr.d—dbe S(Ibg +b 1" +1,b.)+q-&,
d 5 L (2.169)
. V. v . -1 :
D=r:d-2—b_:1+|2—Db, |:|-=(l,b. )b, |+q-&,
T dbe e ( abe ej |: 2(V e) E:| q &
which finally leads to
D=lr—2Mp, |:d+[2%%0, |:|-L (1,b,) bt |+q-E>0. (2.170)
ob, ob, 2 —
plastic part

Concluding, the thermodynamic restriction implies that inequality (2.170) must be satisfied in respect to all
admissible stresses and internal state variables. It denotes the so-called principle of maximal dissipation

(Nguyen, 2005). In other words, plastic deformations always occur in the direction that maximizes D.

It should be pointed out that in the case of elastic and hyperelastic materials, the thermodynamic restrictions are
not present since there are no plastic strains (no entropy production). On the other hand, in the case of non-
linear material (such as concrete), the maintenance of thermodynamic restriction plays a fundamental role in

numerical simulation of deformations (Nguyen, 2005).

In order to numerically obtain the principle of maximal dissipation 