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Abstract

In this thesis different aspects of behaviour of layered structures are analysed and

numerically modelled using beam finite elements. Three models for the layered

beams are presented. All the models are expressed in a general form for an arbi-

trary number of layers and each layer can have individual geometrical and material

properties, boundary conditions and applied loading. The first of them is an ana-

lytical model for a multi-layer beam with compliant interconnections. Kinematic

and constitutive equations are linear and various interlayer contact conditions are

considered (no contact, rigid interconnection, interlayer slip and/or interlayer up-

lift). The second model is a finite element formulation for geometrically exact

multi-layer beams with a rigid interconnection. This model proves to be very

efficient for modelling homogeneous structures via multi-layer beams, especially

for thick beam-like structures, where cross-sectional warping is more pronounced.

The third model deals with mixed-mode delamination in multi-layer beams. A

damage-type bi-linear constitutive law for the interconnection is implemented for

an interface finite element sandwiched between two layers. Numerical examples are

presented for all models and the results of the tests are compared to representative

results from the literature.

Keywords: layered beams, analytical solution, non-linear analysis, mixed-mode

delamination.
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Sažetak

U ovoj disertaciji obrađeni su različiti aspekti ponašanja slojevitih nosača modeli-

ranih grednim konačnim elementima. Predstavljena su tri modela za proračun slo-

jevitih greda. Svi predstavljeni modeli zapisani su u općenitom obliku za proizvo-

ljan broj slojeva, gdje svaki sloj može imati zasebne geometrijske i materijalne

karakteristike te opterećenje i rubne uvjete.

Prvi je analitički model za višeslojnu gredu s popustljivim kontaktom među slo-

jevima. Kinematičke i konstitutivne jednadžbe su linearne te su u obzir uzeti

različiti uvjeti na kontaktu. Tako veza među slojevima može biti apsolutno kruta,

omogućavati nezavisno rotiranje jednog sloja u odnosu na drugi, omogućavati kli-

zanje i razmicanje među slojevima ili pak slojevi mogu biti potpuno nepovezani. U

numeričkim primjerima istražen je utjecaj materijalnih i geometrijskih parametara

osnovnog materijala i kontakta na ponašanje slojevitih greda.

Drugi model predstavlja formulaciju konačnog elementa za geometrijski egzaktnu

višeslojnu gredu s krutom vezom među slojevima. Ovaj model se pokazao vrlo

efikasnim za modeliranje homogenih nosača koristeći višeslojne grede, posebno u

slučaju visokih greda kod kojih je naglašeno vitoperenje poprečnog presjeka. U

usporedbi s ravninskim konačnim elementima koji se često koriste za diskretizaciju

ravninskih nosača, model višeslojne grede daje usporedivo dobre rezultate koristeći

znatno manji broj stupnjeva slobode.

Treći model uvodi raslojavanje u višeslojne grede. Kontaktni konačni element s

ugrađenim bilinearnim konstitutivnim zakonom koji uzima u obzir oštećenje umet-

nut je između grednih konačnih elemenata čime je omogućeno modeliranje prob-

lema s odvojenim oblicima (modovima) raslojavanja I i II te mješovitim oblikom

raslojavanja. Numerički primjeri pokazuju kako ovakav gredni model, u usporedbi

s modelima koji koriste ravninske konačne elemente, daje rezultate usporedive

točnosti uz manji broj stupnjeva slobode.

Ključne riječi: slojevite grede, analitičko rješenje, nelinearna analiza, mješovito

raslojavanje.
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1 INTRODUCTION

Layered structures appear in many engineering applications as well as in nature

and provide an extremely effective means of optimising functional and structural

performance of diverse mechanical systems. Fibre-reinforced carbon-composite

laminates are a typical example where different laminae are stacked on one an-

other, each one with fibres oriented in a specific direction to provide a composite

structure with optimised performance [43]. Examples in nature range from struc-

tural geology, e.g. the structure of the Earth itself [58], but also sedimentary rock

structures [9], to the morphology of trees and plants [45]. The best example is

probably the human body, where skin, blood vessels, cell membranes, to mention

just a few, are all made up of thin layers [64].

In civil engineering, the use of composite structures, where two or more compo-

nents from one or more different materials are used in a single cross section, is very

common. The basic idea is to combine the components in such a way that each

of them fulfils the function for which its material characteristics are best suited.

Due to this optimised performance of their components, the composite systems

are economical and have a high load-bearing capacity. Steel-concrete composite

beams, wood-steel concrete floors, coupled shear walls, sandwich beams, concrete

beams externally reinforced with laminates and many others are all examples of

composite structures in civil engineering. The mechanical behaviour of these struc-

tures largely depends on the type of connection between the layers, which can be

continuous (glue) or discrete (mechanical shear connectors such as nails, screws

and bolts). Continuous glued interconnection in comparison with discrete shear

connectors is considerably stiffer, but it also provides only a partial interaction

between the layers with interlayer slip and uplift [73]. Therefore, a partial interac-

tion has to be taken into consideration in the mechanical analysis of multi-layered

structures.
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Research and application of layered composite structures in many areas of engi-

neering has increased considerably over the past couple of decades and continues

to be a topic of undiminished interest in the computational mechanics community.

Modelling such structures can have many different aspects, considering the geom-

etry of the problem, material properties, time-dependence of the applied loading

etc.

In the present work, the area of interest is reduced only to plane static problems.

Thus, the state of the art for the three-dimensional models and the models which

include dynamic effects will not be presented. To model the layered structures,

in the present work, beam theory is used, meaning that the geometrical and ma-

terial properties, the displacements and rotations, the boundary conditions and

the applied loading, are reduced to a single reference axis. This concept results

in a one-dimensional formulation, where all the basic variables vary only with

respect to a co-ordinate along the reference axis. In comparison with two- and

three-dimensional theories (see [67]), beam theory is simpler. It is true that it

also neglects a number of planar and spatial effects, but, in many applications,

the beam models offer a satisfactory accuracy and less computational effort in

comparison with more complex 2D or 3D models.

Basic equations defining a layered beam consist of kinematic, constitutive, equilib-

rium and assembly equations. Kinematic equations define the relationship between

the displacements and the strains of the structure, constitutive equations relate the

internal forces (stress resultants) to the strains, equilibrium equations define the

internal-external forces relationship, while in the assembly equations the connec-

tion between layers is defined. Kinematic equations for the plane beam problem

in the exact (non-linear) form were given by Reissner [48]. If small displacements

and rotations in the deformed state are assumed, which is often the case in civil

engineering problems, the exact Reissner’s equations can be reduced to a linear

form, also known as Timoshenko’s beam theory [66]. In both Reissner’s and Tim-

oshenko’s beam theories the strains produced by the shear forces are considered.

If they are neglected, Timoshenko’s beam theory reduces to Euler-Bernoulli or

classical beam theory [10], which is also given in a linear form. The constitutive

equations can be also given in linear or non-linear form.

2



Only in case when both kinematic and constitutive equations as well as the equi-

librium equations are given in linear form the solution of the problem can be

obtained analytically. In case of geometrical or/and material non-linearity, the

solution can be obtained only numerically. The method which is used most often

for the problems of layered structures is the finite element method (FEM). Since

the layered structures can have two or more layers, the layered beam models from

the literature are usually given for two-, three-(sandwich) or multi-layer beams.

Conditions at the interconnection of a layered beam are fundamentally important

for the model. Interconnection can be defined only in discrete points, or it can

be modelled as continuous, which can be either rigid or allow for interlayer slip

and/or uplift.

In this thesis three different models for multi-layer beams with arbitrary number

of layers and zero-thickness interlayer interface are proposed. The first model deals

with linear kinematic and constitutive relations for each layer and interface enables

an analytical solution. The second model focuses on geometrical non-linearity for

the case of rigid connection between the layers, while the third model introduces

material non-linearity at the interconnection. Since analytical solutions for the

last two models cannot be obtained, a finite element formulation is proposed. A

brief introduction to each of these parts with corresponding state of the art is

presented next.

In the fist part of the thesis, an analytical solution for a multi-layer beam with

compliant interconnections is presented. For different conditions at the intercon-

nections (completely rigid interconnection, rigid interconnection allowing for indi-

vidual rotations of layers, interlayer slip, interlayer slip and uplift) considered, four

basic models with their systems of differential equations are obtained. Restraining

the interlayer degrees of freedom (interlayer slip, uplift and rotation) reduces the

system of differential equations, which are solved considering the corresponding

boundary conditions. The number of layers is arbitrary, and each layer can have

individual material and geometrical properties, as well as its own applied loading.

The results for this model are presented in [72].

3



Considering the analytical solutions for layered beams, to this end, a large num-

ber of references exist. Among many others, a few examples are given here. Mc-

Cutheon [37] proposed a simple procedure for computing the composite stiffness

of a wood bending member with sheathing attached non-rigidly to one or both

edges. Girhammar and Pan [21] proposed an analytical solution for a geometri-

cally and materially linear two-layer composite beam with interlayer slip using the

Bernoulli beam theory. Schnabl et al. [53] dealt with buckling of such beams,

while Schnabl et al. [54, 57] and Kryžanowski et al. [35] used the Timoshenko

beam theory for the two-layer beams/columns. In addition to interlayer slip, in-

terlayer was introduced to a two-layer beam model by Nguyen et al. [39], Adekola

[1], Gara [20], Ranzi et al. [46, 47] and Kroflič it et al. [32]. More recently, Schnabl

and Planinc [55] applied both interlayer slip and uplift in the buckling analysis

of two-layer composite columns where transverse shear deformation is also taken

into consideration.

For the sandwich beam model with partial interaction Schnabl et al. [56] pro-

posed an analytical solution, while Attard and Hunt [4] presented a hyperelastic

formulation of a sandwich column buckling where interlayer slip and uplift were

neglected. Frostig [19] presented the classical and the high-order computational

models of unidirectional sandwich panels with incompressible and compressible

cores.

An analytical model where the effect of interlayer slip and uplift on mechanical

behaviour of layered structures is neglected was proposed by Bareisis [6]. Sousa Jr.

et al. [63] proposed an analytical solution for geometrically and materially linear

multi-layer beams allowing for interlayer slip, while the aforementioned model

proposed by Škec et al. [72] introduced both the slip and the interlayer uplift.

In the second part of the thesis, a geometrically exact (non-linear) finite element

formulation for a multi-layer beam with a rigid interconnection is presented. In-

terlayer slip and uplift are not allowed, but each layer can have individual cross-

sectional rotation. Such a formulation is very suitable for modelling beams where

cross-sectional warping is pronounced (like thick beams, for example), since the

layers’ cross-sections, in deformed state, form a piecewise-linear shape, which ap-

proximates a warped cross-section. Although this formulation allows for assigning

4



individual material and geometrical properties for each layer, due to its rigid in-

terconnection, it is more suitable for modelling homogeneous beams, rather than

composite beams where interlayer slip (and uplift) are influences that should not

be neglected. The results from this model are presented in the work by Škec

and Jelenić [71], and the formulation has been later used as a base for a layered

reinforced-concrete planar beam finite element models with embedded transversal

cracking proposed by Šćulac et al. [70].

Considering the layered beam models with geometrically exact formulation, two-

layer models, including material non-linearity and interlayer slip and uplift, were

proposed by Kroflič et al. [33, 34]. Vu-Quoc et al. [74] proposed a geometrically

exact formulation for sandwich beams with a rigid interlayer connection and a

generalization to multi-layered beams [75, 76]. In this formulations the equilibrium

equations were derived using the Galerkin projection, in contrast to the principle

of virtual work used here [71].

Another important phenomenon in the analysis of layered structures is delamina-

tion, which is introduced in the third part of the thesis. Delamination is one of the

most prevalent and severe failure modes in layered composite structures, difficult

to detect during routine inspections and presents one of the biggest safety chal-

lenges that the aerospace industry has been facing in the last decades [14]. Since

the finite element method is commonly used to analyse composite structures, it is

necessary to incorporate delamination in the FE model to assess the integrity of

a damaged structure.

When initially proposed by Barenblatt [7], cohesive zone models (CZMs) provided

a radically new approach to the phenomenon of crack propagation, fundamentally

different from that of Griffith [22] in that they allowed the fracturing process to

be governed by the stress distributed over a finite region around the crack tip,

typically named ’the process zone’, rather than the stress concentrated at the

crack tip. This model allowed the transfer of stresses over the crack provided

it remained sufficiently narrow, and could be justified by a variety of physical

phenomena taking place in materials during fracture [8]. Ever since Hillerborg et

al. [25] made their first FE implementation of the model, CZMs have continued to

generate much interest within the computational mechanics research community

5



reflected by the immense literature in this field published in the last two decades

(see e.g. [15, 68, 78] and the references therein).

Obviously, it can be appreciated that to model complex layered structures nu-

merically, along the lines of the cohesive-zone theory, very sophisticated and com-

putationally intense numerical procedures are needed, which are often too com-

putationally expensive to be applicable as every-day design tools in engineering

practice.

To bridge the gap between such expensive computational procedures and a desire

of the structural analyst to have more effective and engineer-oriented design tools,

in this thesis, a finite element formulation for a multi-layer beam with intercon-

nection is presented. Here, the processes of crack occurrence and propagation,

damage-type material softening, and eventual delamination are modelled using

beam-type finite elements stemming from Reissner’s beam theory [48] to describe

structural layers and interface elements with bi-directional stiffness [2]. Beam el-

ements are more intuitive than solid elements and in geometrically linear analysis

Reissner’s theory corresponds to the well-known Timoshenko theory which forms

a part of every engineering education, and their behaviour is expected to be more

familiar to the analyst. More importantly, they make use of a smaller number of

degrees of freedom eventually reducing the overall computational burden. Finally,

beam elements can be used with very good accuracy for problems such as double

cantilever beam (DCB) and peel tests [31], which are widely used to characterise

fracture as discussed above. The results presented in the third part of the the-

sis, show that modelling delamination using beam finite elements, rather than 2D

plane-stress finite elements, is an alternative that should be seriously considered.

In spite of all these arguments, research in damage and delamination using beam

finite elements has been rather scarce and, to the best of author’s knowledge, has

not addressed the dual-mode delamination. In particular, Sankar [51] proposed a

geometrically linear laminated shear deformable beam finite element divided into

two sublaminates connected by ’damage struts’. Roche and Accorsi [50] developed

a geometrically linear finite element for laminated beams based on simplified kine-

matic assumptions with an additional nodal degree of freedom which is activated

when the element contains delamination. Eijo et al. [18] proposed a beam model

6



for mode II delamination in geometrically linear laminated beams assuming an

isotropic non-linear material behaviour and a piecewise linear (zigzag) displace-

ment functions to introduce the interlayer slip into the displacement field. In the

work of Kroflič et al. [34], geometrically exact two-layer beam finite element with

uncoupled non-linear laws of interlayer contact in both tangent and normal direc-

tions is presented. In a more theoretical vein, the issues of damage and delamina-

tion in continua subject to beam-like kinematic constraints have been investigated

very recently by de Morais, who proposed an analytical solution for mode II [16]

and mode I delamination [17] in geometrically linear beams with bilinear cohesive

law, and by Harvey and Wang, who presented analytical theories for the mixed-

mode partitioning [77] of one-dimensional delamination in laminated composite

beams within the context of both Euler and Timoshenko beam theories [23].

Each part of this thesis presents a procedure for the analysis of multi-layered beams

with different formulation of the governing equations. Depending on the form of

kinematic and constitutive equations, linear and non-linear solution procedures are

presented. The final chapter of the thesis gives the conclusions and the guidelines

for the future work.
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2 LINEAR ANALYSIS OF MULTI-

LAYER BEAMS WITH COMPLIANT

INTERCONNECTIONS

2.1 Introduction

In this chapter, analytical models of multi-layer beams with various combinations

of contact conditions are presented. The models take into account both inter-

layer slip and uplift, different material and geometrical properties of individual

layers, different transverse shear deformations of each layer, and different bound-

ary conditions of the layers. The analytical studies are carried out to evaluate the

influence of different contact conditions on the static and kinematic quantities. A

considerable difference of the results between the models is obtained.

2.2 Problem description

A model of a planar multi-layer beam composed of N layers and N − 1 contact

planes is studied with the following assumptions:

1. material is linear elastic,

2. displacements, rotations and strains are small,

3. shear strains are taken into account (the Timoshenko beam),

4. normal strains vary linearly over each layer (the Bernoulli hypothesis),

5. friction between the layers is neglected or is taken into account indirectly

through the material models of the connection,
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6. cross sections are symmetrical with respect to the plane of deformation and

remain unchanged in the form and size during deformation,

7. both transverse and longitudinal separations between the layers are possible

but they are assumed to be mutually independent and

8. loading of a multi-layer beam is symmetrical with regard to the plane of

deformation.

An initially straight, planar, multi-layer beam element of undeformed length L is

considered, of which two adjacent layers i and i+1 separated by a contact plane α

are shown in Fig. 2.1. The beam is placed in the (X,Z) plane of a spatial Carte-

sian coordinate system with coordinates (X, Y, Z) and unit base vectors EX ,EY ,

and EZ . Each layer has its own reference axis which coincides with the layer’s

centroidal axis. The reference axis of an arbitrary layer i is denoted as xi in the

undeformed configuration and xi in the deformed configuration. The material par-

ticles of each layer are indentified by material coordinates xi, yi, zi (i = 1, 2, . . . , N).

Besides, the material coordinate xi of each layer is identical with its reference axis.

In addition, it is assumed that x1 = x2 = . . . = xN = x.

Figure 2.1: Undeformed and deformed configuration of a multi-layer beam.
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The multi-layer beam element is subjected to the action of the distributed load pi

= piXEX+piZEZ and the distributed moment mi = mi
Y EY along the length of each

layer. A differential segment of length dx of layer i with the applied loading with

respect to the reference axis, the cross-sectional equilibrium forces and bending

moments, and contact tractions in tangential and normal directions pt,α−1, pt,α,

pn,α−1, and pn,α is shown in Fig. 2.2.

Figure 2.2: Internal forces and interlayer tractions in a multi-layer beam ele-
ment.

External point forces and moments can be applied only at the ends of the multi-

layer beam element and are introduced via boundary conditions. The system of

linear governing equations of the multi-layer beam is obtained using a consistent

linearization of governing non-linear equations of a Reissner planar beam in the

undeformed initial configuration [48]. Thus, the linearised system of governing

equations consists of equilibrium and constitutive equations with accompanying

boundary conditions of each layer and the constraining equations that assemble

each layer into a multi-layer beam.

2.3 Governing equations

2.3.1 Kinematic equations

The kinematic equations listed below define the relationship between the displace-

ments and strains for an arbitrary layer i:

ui′ − εi = 0,

wi′ + ϕi − γi = 0,

ϕi′ − κi = 0.

(2.1)
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In Eqs (2.1), ui, wi, ϕi denote the components of the displacement and rotation

vector of the ith layer at the reference axis xi = x with respect to the base vectors

EX ,EY , and EZ , respectively. The prime (•)′ denotes the derivative with respect

to x. The extensional strain of the reference axis of the ith layer, the shear and

the bending strain of the corresponding cross section of the ith layer are denoted

by εi, γi, and κi, respectively.

2.3.2 Equilibrium equations

The relationship between the loads applied on the layer i, the corresponding in-

ternal equilibrium forces and the distributed contact tractions are defined by the

equilibrium equations derived from Fig. 2.2:

N i′ + piX − pt,α−1 + pt,α = 0,

Qi′ + piZ − pn,α−1 + pn,α = 0,

Mi′ −Qi +mi
Y + pt,α−1d

i + pt,α(hi − di) = 0,

(2.2)

where N i and Qi represent the axial and shear equilibrium forces whileMi is the

equilibrium bending moment of the ith layer. On the other hand, piX , piZ , and

mi
Y are the distributed loads on ith layer given with respect to the reference axis

xi = x. The tangential and the normal interlayer contact tractions on the contact

plane α are denoted by pt,α and pn,α. On the outer planes of the multi-layer beam

(α = 0 and α = N) no contact exists, thus

pt,0 = pn,0 = 0,

pt,N = pn,N = 0.
(2.3)
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2.3.3 Constitutive equations

The constitutive internal forces N i
C ,QiC , and Mi

C are related to the equilibrium

internal forces N i,Qi, andMi by the following constitutive equations:

N i −N i
C = 0,

Qi −QiC = 0,

Mi −Mi
C = 0.

(2.4)

In the case of a linear elastic material and when the layer reference axis coincides

with its centroidal axis, the constitutive forces are given by the linear relations

with respect to εi, κi, and γi [26]:

N i
C = EiAiεi = Ci

1ε
i,

QiC = kiyG
iAiγi = Ci

2γ
i,

Mi
C = EiJ iκi = Ci

3κ
i.

(2.5)

In Eqs (2.5), Ei and Gi are the elastic and shear modulus, Ai denotes the area of

the cross section, and J i is the second moment of area of the ith layer with respect

to the reference axis xi = x. The shear coefficient of the cross section of the ith

layer is denoted by kiy. For rectangular cross sections and isotropic material this

coefficient is 5/6 [12].

2.3.4 Constraining equations

The constraining equations define the conditions by means of which an individual

layer i is assembled into a multi-layer beam. When a material point on the contact

plane α between layers i and i + 1 is observed (see Fig. 2.1), it can be identified

in the undeformed configuration with points T i(x, zi = hi−di) and T i+1(x, zi+1 =

−di), the first one on the lower edge of the upper layer i and the second one on the

upper edge of the lower layer i+1. In the deformed configuration these two points

become separated due to an interlayer separation. Vectors Ri(x, zi = hi− di) and

Ri+1(x, zi+1 = −di) determine the position of points T i and T i+1 in the deformed
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configuration:

Ri(x, zi) =
(
x+ ui(x) + ai(x, zi)

)
EX +

(
di − hi + wi(x) + vi(x, zi)

)
EZ ,

Ri+1(x, zi+1) =
(
x+ ui+1(x)− ai+1(x, zi+1)

)
EX +

(
di+1 + wi+1(x)− vi+1(x, zi+1)

)
EZ ,

(2.6)

where ai(x, zi) = (hi − di) sinϕi(x), ai+1(x, zi+1) = di+1 sinϕi+1(x), vi(x, zi) =

(hi − di) cosϕi(x), and vi+1(x, zi+1) = di+1 cosϕi+1(x). Corresponding to the as-

sumption of small displacements and rotations, the vector of separation of points T i

and T i+1, rα(x, zi, zi+1) = Ri+1(x, zi+1)−Ri(x, zi) (α = 1, 2, . . . , N−1 and i = α),

reads

rα(x, zi, zi+1) =
(
ui+1(x)− ui(x)− di+1ϕi+1(x)− (hi − di)ϕi(x)

)
EX+

+
(
wi+1(x)− wi(x)

)
EZ .

(2.7)

An interlayer slip between the adjacent layers is denoted by ∆uα and can be

defined from Eq. (2.7) as

∆uα = ui+1 − ui − di+1ϕi+1 − (hi − di)ϕi. (2.8)

Since all the quantities in Eq. (2.8) are functions of material coordinate x, the no-

tation of the argument x is abandoned. The interlayer uplift (vertical separation)

is marked by ∆wα and defined from Eq. (2.7) as

∆wα = wi+1 − wi. (2.9)

The term interlayer distortion, ∆ϕα, is introduced as well to describe the difference

between the rotation angles of adjacent layers as

∆ϕα = ϕi+1 − ϕi. (2.10)

In general, flexibility of the contact highly depends on the way the contact is en-

forced. A constitutive law of the connection between the layers generally assumes

a non-linear relationship between contact displacements and interlayer tractions

[2, 69]. In the present paper, as generally proposed in the structural engineering

practice, a linear constitutive law of the incomplete connection between the lay-

ers is assumed, see e.g. [1, 32, 57]. For the contact plane α, a linear uncoupled
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constitutive law of the connection between the layers can be written as

pt,α = Kt,α∆uα,

pn,α = Kn,α∆wα,
(2.11)

where Kt,α and Kn,α are the slip and uplift moduli at the interlayer surface. On

the other hand, the rotational degree of freedom in the contact defined e.g. as

mY,α = Kϕ,α∆ϕα, (2.12)

is in this paper not taken into account. With Eq. (2.10) only the difference of

the cross sectional rotations are defined which is due to different transverse shear

deformations of the layers. Eqs (2.11) can be used only in case when interlayer

displacements are realised, thus ∆uα 6= 0 and/or ∆wα 6= 0. For example, in the

case when ∆uα = 0 from Eqs (2.11) it follows that pt,α = 0. That is obviously

incorrect, since interlayer tractions also appear when interlayer displacements are

absent. This former contradiction originates from the fact that in the limiting

case, i.e. Kt,α → ∞ and Kn,α → ∞, the system of governing equations of a

multi-layer composite beam becomes singular [27]. In these cases, the governing

equations should be reformulated in a way that will be described below. Note

that when ∆uα = 0, the tangential contact tractions pt,α are calculated from

the equilibrium equations, i.e. Eqs (2.2). Similarly, when ∆wα = 0, the same

equilibrium equations are used to express pn,α, as well.

2.4 Basic models

The interlayer degrees of freedom can be described using ∆uα, ∆wα, and ∆ϕα. By

allowing or constraining a specific degree of freedom in the contact plane, 23(N−1)

different combinations of contact plane conditions are introduced. In the present

paper only four basic and most common models of different connections between

the layers are elaborated although models where the constraining equations are

different for each contact plane can be formulated in a similar manner. These com-

mon models and their corresponding interlayer degrees of freedom are presented

in Tab. 2.1.
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Table 2.1: Basic models with corresponding interlayer degrees of freedom

MODEL ∆u ∆w ∆ϕ
M000 × × ×
M001 × ×

√

M101

√
×

√

M111

√ √ √

×: zero value;
√
: non-zero value;

The model M000 obviously reintroduces the Bernoulli hypothesis over the entire

cross-section (Kt,α → ∞, Kn,α → ∞ and Kϕ,α → ∞), while the M001 relaxes

this hypothesis to make it hold for each layer separately, thus Kt,α → ∞ and

Kn,α → ∞, but Kϕ,α ∈ [0,∞〉. In the models M101 (only Kn,α → ∞) and M111

the deformed cross-sections are not requested to remain continuous.

2.4.1 Model "000"

The contact plane conditions for the model M000 according to Tab. 2.1 are de-

scribed by the following expressions (i = 1, 2, . . . , N − 1):

ui+1 = ui + (hi − di + di+1)ϕi,

wi = wi+1 = wk,

ϕi = ϕi+1 = ϕk,

εi+1 = εi + (hi − di + di+1)κi,

γi = γi+1 = γk,

κi = κi+1 = κk,

(2.13)
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where the index k marks an arbitrary layer from i = 1, . . . , N . After considering

relations (2.13) in the general governing equations of the multi-layer beam (2.1)-

(2.5), the basic equations of the model M000 are the following:

uk′ − εk = 0, N ′ +
N∑
i=1

piX = 0,

wk′ + ϕk − γk = 0, Q′ +
N∑
i=1

piZ = 0,

ϕk′ − κk = 0, M′ −Q+
N∑
i=1

mi
Y +

N∑
i=1

(
pt,i−1d

i + pt,i(h
i − di)

)
= 0 or

(2.14)

M′
TOT −Q+

N∑
i=1

mi
Y = 0,

N =
N∑
i=1

Ci
1ε
i, Q =

N∑
i=1

Ci
2γ

i, M =
N∑
i=1

Ci
3κ

i,

where

N =
N∑
i

N i, Q =
N∑
i

Qi, M =
N∑
i

Mi.

Since every layer has its own separate reference axis, M is not the total cross-

sectional bending moment of a composite beam because the axial forces N i, that

are mutually dislocated, contribute to the total bending moment as well. Thus,

MTOT =M+
N∑
i

N i ri, where ri is the distance between the reference axis of the

ith layer and the arbitrary axis with respect to whom the total bending moment

is computed. The system (2.14) is a system of nine equations for nine unknown

functions uk, wk, ϕk, N , Q, M or MTOT, εk, γk, and κk where the additional

functions pt,i are expressed in terms of strains εk and γk using (2.2), (2.4) and

(2.5). Using the last three equations of system (2.13), we express εk, γk and κk

in the system (2.14) in terms of uk, wk and ϕk, finally obtaining a system of six

ordinary linear differential equations with constant coefficients for six unknown

functions uk, wk, ϕk, N , Q, andM orMTOT. This reduced system can be solved

analytically with the following boundary conditions from which six constants of
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integration are found:

f 0
1 N (0) + (1− f 0

1 )uk(0) = f 0
1 S

0
1 + (1− f 0

1 )Uk
1 (0),

f 0
2 Q(0) + (1− f 0

2 )wk(0) = f 0
2 S

0
2 + (1− f 0

2 )Uk
2 (0),

f 0
3 M(0) + (1− f 0

3 )ϕk(0) = f 0
3 S

0
3 + (1− f 0

3 )Uk
3 (0),

fL1 N (L) + (1− fL1 )uk(L) = fL1 S
L
1 + (1− fL1 )Uk

1 (L),

fL2 Q(L) + (1− fL2 )wk(L) = fL2 S
L
2 + (1− fL2 )Uk

2 (L),

fL3 M(L) + (1− fL3 )ϕk(L) = fL3 S
L
3 + (1− fL3 )Uk

3 (L),

(2.15)

where S0
n =

N∑
i=1

S0,i
n and SLn =

N∑
i=1

SL,in (n = 1, 2, 3), are the external end point

forces and moments of the beam, while U0
n and UL

n are the displacements and the

rotations at the beam ends that are identical for all layers. The coefficients f 0
n and

fLn have values 1 or 0 depending on the type of the support at the beam ends.

2.4.2 Model "001"

This model is defined by the contact plane conditions described below:

ui+1 = ui + di+1ϕi+1 + (hi − di)ϕi,

wi = wi+1 = wk,

εi+1 = εi + di+1κi+1 + (hi − di)κi,

γi+1 = γi + ϕi+1 − ϕi,

(2.16)

where i = 1, 2, . . . , N − 1. The basic equations of the model are written by

considering relations (2.16) as (i = 1, ..., N)

uk′ − εk = 0, N ′ +
N∑
i=1

piX = 0,

wk′ + ϕk − γk = 0, Q′ +
N∑
i=1

piZ = 0,

ϕi′ − κi = 0, Mi′ −Qi +mi
Y + pt,i−1d

i + pt,i(h
i − di) = 0,

(2.17)

N =
N∑
i=1

Ci
1ε
i, Q =

N∑
i=1

Ci
2γ

i, Mi = Ci
3κ

i.
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Similarly as in the model M000, the contact tractions pt,α (α = 1, 2, . . . , N −

1) are expressed via the strains εk, γk, and κi which are further expressed via

displacements uk, wk, and ϕi, (i = 1, 2, . . . , N). This allows reducing the system

(2.17) to a system of 4 + 2N linear first-order ordinary differential equations with

constants coefficients for the same number of unknown functions: uk, wk, N , Q,

ϕi, andMi (i = 1, 2, . . . , N). These functions are determined after the system is

solved in conjunction with the following boundary conditions:

f 0
1 N (0) + (1− f 0

1 )uk(0) = f 0
1 S

0
1 + (1− f 0

1 )U0
1 ,

f 0
2 Q(0) + (1− f 0

2 )wk(0) = f 0
2 S

0
2 + (1− f 0

2 )U0
2 ,

f 0,i
3 Mi(0) + (1− f 0,i

3 )ϕi(0) = f 0,i
1 S0,i

3 + (1− f 0,i
3 )U0,i

3 ,

fL1 N (L) + (1− fL1 )uk(L) = fL1 S
L
1 + (1− fL1 )UL

1 ,

fL2 Q(L) + (1− fL2 )wk(L) = fL2 S
L
2 + (1− fL2 )UL

2 ,

fL,i3 Mi(L) + (1− fL,i3 )ϕi(L) = fL,i3 SL,i3 + (1− fL,i3 )UL,i
3 ,

(2.18)

where S0
n =

N∑
i=1

S0,i
n and SLn =

N∑
i=1

SL,in (n = 1, 2) and f 0,i
3 and fL,i3 are the boundary

conditions coefficients at the beam ends for each layer. They have values 1 or 0

depending on the type of the support at the both ends of each layer. External

moments and rotations at the ends of each layer are denoted by S0,i
3 , SL,i3 and

U0,i
3 , UL,i

3 , respectively. In addition, note that U0
1 , U

0
2 , U

L
1 , and UL

2 are the same

for all layers.

2.4.3 Model "101"

Using the contact conditions from Tab. 2.1, the following relations are derived

(α = 1, 2, . . . , N − 1 and i = α)

wi = wi+1 = wk

γi+1 = γi + ϕi+1 − ϕi,

pt,α = Kt,α∆uα.

(2.19)
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The basic equations for the model M101 are presented below (i = 1, 2, . . . , N):

ui′ − εi = 0, N i′ + piX − pt,i−1 + pt,i = 0,

wk′ + ϕk − γk = 0, Q′ +
N∑
i=1

piZ = 0,

ϕi′ − κi = 0, Mi′ −Qi +mi
Y + pt,id

i + pt,i−1(h
i − di) = 0,

(2.20)

N i = Ci
1ε
i, Q =

N∑
i=1

Ci
2γ

i, Mi = Ci
3κ

i.

The strains εi, γk and κi are expressed via internal forces N i, Q andMi from the

constitutive equations (last 2N + 1 equations of the system (2.20)). The contact

tractions pt,α are expressed via displacements ui and rotations ϕi from Eqs (2.19)

and (2.8). The system (2.20) is reduced to a system of 2 + 4N linear first-order

ordinary differential equations with constant coefficients for the same number of

unknown functions: ui, wk, ϕi, N i, Q, and Mi (i = 1, 2, . . . , N). To solve this

system the corresponding boundary conditions are considered:

f 0,i
1 N i(0) + (1− f 0,i

1 )ui(0) = f 0,i
1 S0,i

1 + (1− f 0,i
1 )U0,i

1 ,

f 0
2 Q(0) + (1− f 0

2 )wk(0) = f 0
2 S

0
2 + (1− f 0

2 )U0
2 ,

f 0,i
3 Mi(0) + (1− f 0,i

3 )ϕi(0) = f 0,i
3 S0,i

3 + (1− f 0,i
3 )U0,i

3 ,

fL,i1 N i(L) + (1− fL,i1 )ui(L) = fL,i1 SL,i1 + (1− fL,i1 )UL,i
1 ,

fL3 Q(L) + (1− fL2 )wk(L) = fL2 S
L
2 + (1− fL2 )UL

2 ,

fL,i5 Mi(L) + (1− fL,i3 )ϕi(L) = fL,i3 SL,i3 + (1− fL,i3 )UL,i
3 ,

(2.21)

where S0
2 =

N∑
i=1

S0,i
2 and SL2 =

N∑
i=1

SL,i2 and f 0,i
1 and fL,i1 are the boundary condi-

tions coefficients with values 0 or 1 depending on the type of support the ends of

each layer. The external longitudinal point forces and horizontal displacements at

the ends of each layer are denoted as S0,i
1 , SL,i1 and U0,i

1 , UL,i
1 , respectively. Again,

note that U0
2 and UL

2 are the same for all layers.

2.4.4 Model "111"

The contact plane conditions for this model are expressed using only the con-

straining equations (2.11). The basic equations of this model are presented below

19



(i = 1, 2, . . . , N):

ui′ − εi = 0, N i′ + piX − pt,i−1 + pt,i = 0,

wi′ + ϕi − γi = 0, Qi′ + piZ − pn,i−1 + pn,i = 0,

ϕi′ − κi = 0, Mi′ −Qi +mi
Y + pt,i−1d

i + pt,i(h
i − di) = 0,

(2.22)

N i = Ci
1ε
i, Qi = Ci

2γ
i, Mi = Ci

3κ
i.

The strains εi, γi, and κi are expressed via internal forces N i, Qi, andMi from the

constitutive equations (last 3N equations in the system (2.22)) and the contact

tractions pt,α and pn,α from Eqs (2.11). System (2.22) is reduced to a system of 6N

linear first-order ordinary differential equations with constant coefficients for the

same number of unknown functions: ui, wi, ϕi, N i, Qi, andMi (i = 1, 2, . . . , N).

The corresponding boundary conditions are:

f 0,i
1 N i(0) + (1− f 0,i

1 )ui(0) = f 0,i
1 S0,i

1 + (1− f 0,i
1 )U0,i

1 ,

f 0,i
2 Qi(0) + (1− f 0,i

2 )wi(0) = f 0,i
2 S0,i

2 + (1− f 0,i
2 )U0,i

2 ,

f 0,i
3 Mi(0) + (1− f 0,i

3 )ϕi(0) = f 0,i
3 S0,i

3 + (1− f 0,i
3 )U0,i

3 ,

fL,i1 N i(L) + (1− fL,i1 )ui(L) = fL,i1 SL,i1 + (1− fL,i1 )UL,i
1 ,

fL,i2 Qi(L) + (1− fL,i2 )wi(L) = fL,i2 SL,i2 + (1− fL,i2 )UL,i
2 ,

fL,i3 Mi(L) + (1− fL,i3 )ϕi(L) = fL,i3 SL,i3 + (1− fL,i3 )UL,i
3 ,

(2.23)

where f 0,i
n and fL,in (n = 1, 2, 3) are the boundary conditions coefficients for each

layer, while S0,i
n , S

L,i
n and U0,i

n , UL,i
n are the external transverse point forces and

vertical displacements at the ends of each layer, respectively.

2.5 Analytical solution

The reduced system of generalised equilibrium equations (2.14), (2.17), (2.20),

and (2.22) are the systems of linear first-order ordinary differential equations with

constant coefficients. Similarly, the systems of generalised equations of other math-

ematical models not introduced in the paper are also systems of linear first-order

ordinary differential equations with constant coefficients. In general, such systems
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of equations can be written in the following compact form as

Y ′(x) = BY (x) + g, Y (0) = Y 0, (2.24)

where Y is the vector of unknown functions, g is the vector of external loading, B

is the matrix of constant coefficients, and Y 0 is the vector of boundary parameters

that are determined from the boundary conditions of the multi-layer beam. The

solution of the inhomogeneous system of differential equations (2.24) is composed

of homogeneous and particular solutions [44].

Y (x) = exp(Bx)[Y 0 +

∫ x

0

exp(−Bξ)g dξ] (2.25)

When a multi-layer beam is subjected only to point forces and moments, i.e g = 0,

the solution of (2.24) is composed of a homogeneous solution only

Y (x) = exp(Bx)Y 0 (2.26)

Similarly as in the case of homogeneous structures, the multi-layer structures are

composed of multi-layer beams. In such cases, the analytical solution is obtained

from the analytical solution of individual multi-layer beam. The procedure is very

similar to the finite element method.

2.6 Numerical results and discussion

Two numerical examples are analysed in detail in order to illustrate the present

theory. In the first example the influence of various parameters on the midspan

vertical displacement of a sandwich beam has been investigated. The influence

of contact discontinuity between the layers of a composite beam on its bearing

capacity has been illustrated in the second example.
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2.6.1 Simply supported sandwich beam with uniformly dis-

tributed load

A parametric study for this example has been performed on a simply supported

sandwich beam subjected to a uniformly distributed load (see Fig. 2.3). The

sandwich beam layers are denoted by i = a, b, c and the contact planes by α =

1, 2, respectively. The geometrical and material characteristics are the following:

Li = L = 100 mm, ha = hc = 1 mm, hb = 18 mm, bi = 60 mm, Ea = Ec = 2 ·

104 N/mm2, Eb = Ea/50, Ga = Ea/8, Gb = 3/4Eb, Gc = Ec/8, kiy = 5/6. The

uniformly distributed load, paZ = 2 N/mm, is applied on the layer a.

Figure 2.3: Simply supported sandwich beam with uniformly distributed ver-
tical load.

Note that the values of the shear moduli fall outside the range of possible values

for an isotropic material, but are perfectly acceptable e.g. for timber [57]. Due

to symmetry, only one half of the sandwich beam has been analysed, so that the

boundary conditions are given as:

N i(0) = N b(0) = 0, wi(0) = 0 Mi(0) = 0, (2.27)

on the left-hand side of the beam, and

ui(L/2) = 0, Qi(L/2) = 0, ϕi(L/2) = 0, (2.28)

on the middle of the beam, where (i = a, b, c). Defining the boundary conditions in

this manner allows us to solve the problem where Kt,α = 0, (α = 1, 2). In Tab. 2.2

the vertical displacements of the centroid axis at the midspan of the sandwich beam

for different multi-layer beam models are presented depending on the L/h ratio.

For L/h = 5 the same characteristics as given above have been used, while for other
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L/h ratios only the length of the beam has been modified accordingly. A vertical

displacement of a homogeneous beam according to the classical engineering theory

proposed by Timoshenko [66], w∞ =
5paZL

4

384EI∞
+

paZL
2

8kyGA∞
, has been used as a refer-

ence vertical displacement, where EI∞ = EI0 +EaAa
(ha + hb)2

4
+EcAc

(hb + hc)2

4
,

EI0 =
c∑
i=a

EiI i and kyGA∞ =
c∑
i=a

kiyG
iAi. The non-dimensional vertical displace-

ment, wM =
wM
w∞

, is introduced, where wM is the vertical displacements at the

midspan of a sandwich beam for an arbitrary model M . Four values of the slip

modulus Kt,α for α = 1, 2 are analysed: 0, 1, 10 and 100 N/mm2. The model

M000 shows exactly the same behaviour as the homogeneous beam, which is due

to its rigid interlayer connection (∆uα = ∆wα = ∆ϕα = 0 where α = 1, 2). The

differences between the results of the models M000 and M001 range between ap-

proximately 7% for a moderately thick beam (L/h = 10) to more than about

53% for a very thick beam (L/h = 2). By allowing the interlayer slip to occur,

the vertical displacements at the midspan increase more considerably, especially

as interaction between the layers gets weaker (Kt,α → 0). In the last column in

Tab. 2.2 the non-dimensional vertical displacement for a sandwich beam with no

interaction between the layers is given according to the Bernoulli beam theory as

w0 =
w0

w∞
with w0 =

5 paZ L
4

384EI0
, where index 0 refers to completely separate layers.

As expected, the results of the model M101 with Kt,α = 0 approach this solution

as the beam becomes thinner.

Table 2.2: Non-dimensional vertical displacement (wM = wM/w∞) at the
midspan for various contact plane conditions depending on L/h ratio.

M000 M001 M101 w0

L/h w∞ [mm] Kt,α? = 100∗ Kt,α? = 10∗ Kt,α? = 1∗ Kt,α? = 0∗

2 0.00106 1.00000 1.53262 5.58215 6.51117 6.62796 6.64128 5.29600
5 0.01621 1.00000 1.21944 6.09954 12.28912 13.88957 14.09633 13.54423
7 0.05321 1.00000 1.13108 4.69571 12.52822 15.71016 16.17645 15.84678
10 0.20161 1.00000 1.07063 3.24534 11.06386 16.58495 17.59765 17.42006
? α = a, b; ∗ in N/mm2

The core thickness ratio influence is described by hb/h, where hb is the core’s

height while h is the total height of the sandwich beam cross-section. By changing

the core height but keeping the total height constant (h = 20 mm) the vertical

displacement at the midspan is studied (see Fig. 2.4). The values of Kt,α are

written in the parentheses next to M101 in the legend to Fig. 2.4. It is noticed

that w increases monotonically with hb/h ratio for the models M000 and M001, but
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for the model M101 an extreme value of w appears for the presented values of Kt,α.

For Kt,α = 0, the maximum vertical displacement at the midspan is obtained for

hc/h ≈ 0.8, while for the higher stiffnessesKt,α the maximum vertical displacement

occurs at lower hb/h ratios. From the expression for w0, it can be easily shown

that the beam stiffness EI0 has a maximum at hb/h = 0.7795 which coincides very

well with the present result for the model M101 with Kt,α = 0.

Figure 2.4: w vs. hb/h for different contact plane conditions (∗ represents Kt,α

in N/mm2).

The influence of the core elastic-to-shear modulus ratio, Eb/Gb, on midspan ver-

tical displacements is displayed in Fig.2.5. The range 0 < Eb/Gb < 100 is rea-

sonable only for anisotropic materials. A considerable difference of the results

between the models M000 and M001 is observed by the interlayer distortion which

is dependent on the layer’s shear modulus. In case when ∆wα = 0 it follows that

∆ϕα = γi+1−γi = Qi+1/Ci+1
2 −Qi/Ci

2 (see Eqs 2.5), which means that the higher

values of the shear moduli produce smaller values of the interlayer distortion and

thus smaller vertical displacements. Obviously, as the Eb/Gb ratio increases the

differences between the models M000 and M001 become more pronounced. For

models M101 the interlayer slip (depending on different Kt,α values) causes a con-

siderable increase in the vertical displacements in comparison to model M001. It

is noticed that all models have almost linear Eb/Gb − w relationship.
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Figure 2.5: w vs. Eb/Gb for different contact plane conditions (∗ represents
Kt,α in N/mm2).

2.6.2 Contact discontinuity influence studies

A simply supported two-layer beam is analysed in this example (see Fig. 2.6).

Layers are marked by i = a, b. The geometrical and material characteristics are

as follows: Li = L = 200 cm, hi = 10 cm, bi = 20 cm, Ei = 800 kN/cm2, Gi =

Ei/16, kiy = 5/6. The uniformly distributed load, pbZ = 0.2 kN/cm, is applied at

the reference layer of the lower layer b.

Figure 2.6: Simply supported two-layer beam.

The beam is divided into three segments, namely e1, e2 and e3, whose lengths

are L1, L2, and L3, respectively. The central segment is made of two com-

pletely separate layers, hence model M111 with Kt = Kn = 0 is used. The

relative mid-segment length is defined by β = L2/L. The outer segments’ lay-

ers are connected according to the model M101. The connection between the

segments is defined by the following continuity conditions: ηie1(L1) = ηie2(0) and

ηie2(L2) = ηie3(0), where ηij = uij, w
i
j, ϕ

i
j, N i

j , Mi
j, where i = a, b, and j = e1, e2, e3.
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The conditions for transverse equilibrium at the connection of the segments are

Qe1(L1) = Qae2(0) + Qbe2(0) and Qae2(L2) + Qbe2(L2) = Qe3(0). The influence of

the interlayer slip modulus Kt between the layers with the segment lengths L1

and L3, and separation length L2, on the beam displacements and equilibrium

forces has been examined next. It is noticed that although the slip modulus has

an influence on all displacements, the interlayer uplift (∆w) and distortion (∆ϕ),

remain unchanged for a given value of β under a variation of Kt (Fig. 2.7a).

Figure 2.7: a.) Vertical displacements for β = 0.5 and various Kts; b.) Inter-
layer slip for Kt = 1 kN/cm2 and various βs; c.) Interlayer slip for Kt = 100

kN/cm2 and various βs.

The interlayer uplift occurs only at the central segment where other than the

applied loading, wi depends on ϕi at the contact with the outer segments, since

the segments on a single layer are rigidly connected. By expanding the expression

for the interlayer distortion as ∆ϕ = ϕb − ϕa = γb − wb′ − (γa − wa′) = Qb/Cb
2 −

Qa/Ca
2 − ∆w′, no dependence between ∆ϕ and Kt is noticed, since shear forces

are independent of Kt (see Eqs (2.22)). This means that ∆w is independent of

Kt and so is ∆ϕ (on the entire length of the beam). Vertical displacement along

the span has been plotted for β = 0.5 and different values of Kt in Fig. 2.7a.

The interlayer slip, ∆u, for β = 0.25, 0.5, 0.75, and Kt = 1, 100 kN/cm2 has been

shown in Figs. 2.7b and c. As expected, ∆u , increases with decreasing of Kt and

increasing the separation length.

The slip modulus Kt affects the distribution of the axial equilibrium forces and the

tangential contact tractions pt, which can be observed again for β = 0.25, 0.5, 0.75,

and Kt = 1, 100 kN/cm2 in Figs. 2.8–2.9.
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Figure 2.8: Axial equilibrium forces: a.) Kt = 1 kN/cm2.; b.) Kt = 100
kN/cm2.

Figure 2.9: Tangential contact tractions: a.) Kt = 1 kN/cm2; b.) Kt = 100
kN/cm2.

In case of Kt =1 kN/cm2, the layers behave almost independently (not much

difference between the inner and the outer segments) and the variation of β has

little effect. In the latter case the slip modulus is high and the influence of β is

more pronounced. The shear forces are, as stated earlier, independent ofKt, and so

are the normal interlayer tractions (see Eqs (2.11) and (2.9)). Their distributions

are for different values of β shown in Fig. 2.10.
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Figure 2.10: Shear forces: a.) layer a; b.) layer b; and c.) normal contact
tractions. All quantities are Kt independent.

2.6.3 Comments on the boundary layer effect

In the context of composite beams with interlayer slip, the boundary layer ef-

fect appears in the case of bending due to boundary moments M0 and becomes

increasingly pronounced with growing shear stiffness of the interlayer connec-

tion. When each individual layer of a two-layer beam is subjected to an end

moment (Ma(0) +Mb(0) = M0 andMa(L) +Mb(L) = M0) with zero axial load

(N a(0) = N b(0) = 0 and N a(L) = N b(L) = 0), the normal forces in each layer

and the tangential tractions at the interlayer connection emerge between the beam

boundaries even though at the boundaries they do not exist.

This problem was investigated by Challamel and Girhammar [11] for a two-layer

beam with interlayer slip using the Euler-Bernoulli beam theory. In the present

work the same problem is investigated using the Timoshenko beam theory. Sub-

stitutingMa = Ca
3ϕ

a′ andMb = Cb
3ϕ

b′ from (2.20) into overall equilibrium along

the beam M0 =Ma +Mb −N a ha+hb

2
yields

M0 = Ca
3ϕ

a′ + Cb
3ϕ

b′ −Na
ha + hb

2
(2.29)

while substituting ua′ = Na
Ca1

and ub′ = N b
Cb1

from (2.20) into the derivative of (2.8)

and the result into into the derivative of (2.19)3 and then into the derivative of

N a′ + pt,a = 0 from (2.20) yields

N a′′ = Kt

[
N a

(
1

Ca
1

+
1

Cb
1

)
+
ha

2
ϕa′ +

hb

2
ϕb′
]
. (2.30)
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Likewise, substituting γa =
Ca3ϕ

a′′−Na′ ha
2

Ca2
and γb =

Cb3ϕ
b′′−N b′ h

b

2

Cb2
from (2.20) into

(2.19)2 yields

ϕ1 − ϕ2 −
Ca

3ϕ
a′′ −N a′ ha

2

Ca
2

+
Cb

3ϕ
b′′ −N b′ hb

2

Cb
2

= 0. (2.31)

Solving (2.29) and (2.30) for ϕa′ and ϕb′ and substituting the result into the deriva-

tive of (2.31) we obtain the following fourth-order differential equation

c1
d4N a

dx4
+ c2

d2N a

dx2
+ c3N a + c4M0 = 0, (2.32)

where

c1 =
2Ca

3C
b
3

Kt(Ca
3h

b − Cb
3h

a)

(
1

Ca
2

+
1

Cb
2

)
, (2.33)

c2 =
2

Cb
3h

a − Ca
3h

b

{
Ca

3 + Cb
3

Kt

+

(
1

Ca
2

+
1

Cb
2

)[
Ca

3C
b
3

(
1

Ca
1

+
1

Cb
1

)
+

+
Cb

3(ha)2 + Ca
3 (hb)2

4

]}
, (2.34)

c3 =
2(Ca

3 + Cb
3)

Ca
3h

b − Cb
3h

a

[
1

Ca
1

+
1

Cb
1

+
(ha + hb)2

4(Ca
3 + Cb

3)

]
, (2.35)

c4 =
ha + hb

Ca
3h

b − Cb
3h

a
. (2.36)

For the Euler-Bernoulli beam theory, shear moduli Gi →∞ and Ci
2 = kiyG

iAi →

∞, (i = a, b), reducing equation (2.32) to exactly the same form as given by

Challamel and Girhammar [11]:

d2N a

dx2
− α2

TN1 = βTM0, (2.37)

where

α2
T =

c3
c2

= Kt

[
1

Ca
1

+
1

Cb
1

+
(ha + hb)2

4(Ca
3 + Cb

3)

]
, (2.38)

βT =
c4
c2

=
Kt(h

a + hb)

2(Ca
3 + Cb

3)
. (2.39)

Using the model M101 and considering a simply supported two layer beam with

identical geometrical and material properties as in the previous exmple without

discontinuity in the interlayer connection (L2 = 0, see Fig.2.11), a numerical
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analysis is performed according to Challamel and Girhammar [11].

Figure 2.11: Beam model for the boundary-effect analysis

Since for the case of pure bending no transverse forces appear, the results obtained

using model M101 are exactly the same as the results proposed by Challamel and

Girhammar [11]. Following the notation due to these authors, the dimensionless

quantities are introduced

x̂ =
x

L
, and n =

N a

N a
∞

=
N b

N b
∞
, (2.40)

where

N a
∞ = −N b

∞ = −

1− Ca
3 + Cb

3

Ca
3 + Cb

3 +
Ca1C

b
1(ha+hb)2

4(Ca1 +Cb1)

 2M0

ha + hb
(2.41)

is the normal force associated with the full composite beam. In Fig. 2.12, the

x̂ − n diagram is shown for various values of parameter α̂, which is defined as

α̂ = αTL and is proportional to the interlayer tangential stinesses. The results

shown in Fig.2.12 correspond perfectly with the results proposed by Challamel

and Girhammar [11]. It is also noticed that for this example the distribution of

the total moment M0 between the layers has no influence on the normal forces,

axial strains and tangential interlayer traction in the composite beam.

2.7 Conclusions

Different mathematical models for analytical studying the mechanical behaviour of

linear elastic multi-layer Reissner’s composite beam with interlayer slip and uplift

between the layers have been presented. The analytical studies have been car-

ried out to evaluate the influence of different parameters on static and kinematic

quantities of multi-layer beams with different combinations of contact conditions.
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Figure 2.12: Influence of the dimensionless connection parameter α̂ on the
dimensionless normalforce n, where α̂ ∈ {1, 2, 4, 10, 25, 50, 100}

Based on the results of this analytical study and the parametric evaluations un-

dertaken, the following conclusions can be drawn:

1. Different interlayer contact conditions have a considerably different influ-

ence on static and kinematic quantities of multi-layer beams. As a results,

considerable differences in results between the models have been obtained.

2. The slip modulus has an influence on all displacements, while the interlayer

uplift (∆w) and distortion (∆ϕ), remain unchanged for a given separation

length under a variation of Kt.

3. The slip (∆u) increases with decreasing Kt and increasing the separation

length. The shear forces are independent of Kt, and so are the normal

interlayer tractions.
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3 NON-LINEAR ANALYSIS OF MULTI-

LAYER BEAMS WITH A RIGID IN-

TERCONNECTION

3.1 Introduction

In this chapter, a finite-element formulation for geometrically exact multi-layer

beams with a rigid interconnection is proposed. The number of layers is arbitrary

and they are assembled in a composite beam with the interlayer connection allow-

ing only for the occurrence of independent rotations of each layer. The interlayer

slip and uplift are not considered, which results in the assembly equations that

significantly simplify the problem. Instead of having horizontal and vertical dis-

placement plus the cross-sectional rotation for each layer (3n, where n is the total

number of layers), the basic unknown functions of the problem are reduced only

to the horizontal and vertical displacement of the composite beam’s reference axis

and the cross-sectional rotation of each layer (2 + n). Due to the geometrically

exact definition of the problem, the governing equations are non-linear in terms

of basic unknown functions and the solution is obtained numerically. In general,

each layer can have different geometrical and material properties, but since the

layers are rigidly connected, the main application of this model is on homogeneous

layered beams.

This model is very similar to the model presented by Vu Quoc et al. [75, 76]

who used the Galerkin projection (see [61] and [74] for details) to obtain the

computational formulation of the resulting non-linear equations of equilibrium in

the static case (the formulation of the equations of motion in the general dynamic

case was proposed, too), while in the present work the equilibrium equations are

derived from the principle of virtual work. While the resulting numerical procedure

is of necessity equal, here we focus on the actual transformation of the displacement
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vector for each layer to the displacement vector of the beam reference line and show

that it may be written in a remarkably elegant form allowing for simple numerical

implementation. Furthermore, in the present work the problems with large number

of layers are specifically analysed and the performance of the elements derived on

the thick beam problems with pronounced cross-sectional warping is compared to

the analytical results and the finite-element results obtained using 2D plane-stress

elements.

3.2 Problem description

3.2.1 Position of the composite beam in the material co-

ordinate system

An initially straight layered beam of length L and a cross-section composed of n

parts with heights hi and areas Ai, where i is an arbitrary layer (i = 1, 2, . . . , n),

is shown in Fig. 3.1.

Figure 3.1: Material co-ordinate system of the composite beam

The layers are made of linear elastic material with Ei and Gi acting as Young’s

and shear moduli of each layer’s material. Each layer has its own material co-

ordinate system defined by an orthonormal triad of vectors E1,i, E2,i, E3,i, with

axes X1,i, X2,i, X3,i. Axes X1,i coincide with reference axes of each layer which are

chosen arbitrarily (they can pass through the corresponding layer, but also fall

outside of it) and are mutually parallel. Thus, a base vector E1 = E1,i and a

coordinate X1 = X1,i can be introduced. The cross-sections of the layers have a

common vertical principal axis X2 defined by a base vector E2 = E2,i (a condition
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for a plane problem). However, for any chosen point on the beam, the co-ordinate

Xi,2 changes for each layer i. Axes X3,i are mutually parallel but do not necessarily

correspond with the horizontal principal axes of the layers’ cross-sections, thus

X3 = X3,i and E3 = E3,i. The height of an arbitrary layer is denoted as hi and

the cross-sectional area by Ai. The distance from the bottom of a layer to the

layer’s reference axis is denoted as ai (see Fig. 4.1). The first and the second

moment of area of the cross-section Ai with respect to axis X3,i are defined as

Si =

∫
Ai

X2,idA, Ii =

∫
Ai

(X2,i)
2dA. (3.1)

3.2.2 Position of a layer of the composite beam in the spatial

co-ordinate system

The reference axes of all layers in the initial undeformed state are defined by the

unit vector t01 which closes an angle ψ with respect to the axis defined by the

base vector e1 of the spatial co-ordinate system (see Fig. 3.2). The position of

a material point T (X1, X2,i) in the undeformed initial configuration is defined at

any layer by the vector

x0,i(X1, X2,i) = r0,i(X1) +X2,it02, (3.2)

where r0,i(X1) is the position of the intersection of the plane of the cross-section

containing point T and the reference axis of the layer i in the undeformed state.

Vector t0j is defined as

t0j = Λ0ej =

cosψ − sinψ

sinψ cosψ

 ej, (3.3)

where j = 1, 2.

During the deformation the cross-sections of the layers remain planar but not

necessarily orthogonal to their reference axes (Timoshenko beam theory with the

Bernoulli hypothesis). The material base vector E3 remains orthogonal to the

plane spanned by the spatial base e1, e2. Orientation of the cross-section of each
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Figure 3.2: Position of a layer of the composite beam in undeformed and in
deformed state

layer in the deformed state is defined by the base vectors

ti,j = Λiej =

cos(ψ + θi) − sin(ψ + θi)

sin(ψ + θi) cos(ψ + θi)

 ej, (3.4)

where index i denotes a layer and j = 1, 2. Rotation of the cross-section of each

layer, denoted by θi, is entirely dependent on X1, thus θi = θi(X1). The position

of a material point T in the deformed state from Fig. 3.2 can be expressed as

xi(X1, X2,i) = ri(X1) +X2,iti,2(X1), (3.5)

where ri(X1) is the position of the intersection of the plane of the cross-section

containing point T and the reference axis of layer i in the deformed state. The

displacement between the undeformed and the deformed state is defined for each

layer with respect to its reference axis, thus

ri(X1) = r0,i(X1) + ui(X1). (3.6)

where ui(X1) is the vector of displacement of the layer’s reference axis.
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3.3 Governing equations

Since the layers are assumed to be connected rigidly, the displacements of each

layer (ui) may be expressed in terms of some basic unknown functions u and θi,

where u is a vector of displacements of an axis taken to be the whole beam’s refer-

ence axis. The equations relating ui to u and θ1 . . . θn will be called the assembly

equations and will be derived first. For each layer, the kinematic and constitutive

equations are given next. Finally, the equilibrium equations are derived from the

principle of virtual work.

3.3.1 Assembly equations

A section of a composite beam with arbitrary number of layers is shown in Fig.

3.3.

Figure 3.3: Undeformed and deformed state of the multilayer composite beam

Since in the present formulation no slip nor uplift are allowed between the layers

of the composite beam, we can easily express displacement of each layer in terms

of the displacement of an arbitrarily chosen main layer α (denoted by u) and

corresponding rotations θi. The reference axis of layer α then becomes the reference

36



axis of the composite beam. In Fig. 3.3 we observe the main layer α, an arbitrarily

chosen layer lying above α, denoted by i+, and another layer lying below α,

denoted by i−. In the deformed state the reference axes deform and the layers’

cross-sections rotate, which is defined by the unit vectors tα,2, ti+,2, ti−,2. Thus,

for i > α, which according to Fig. 3.3 corresponds to the layer i+, we obtain

ui = u+ ai(ti,2 − t02)− aα(tα,2 − t02) +
i−1∑
j=α

hj(tj,2 − t02). (3.7)

Similarly for i < α, which corresponds to the layer i− according to Fig. 3.3, we

obtain

ui = u+ ai(ti,2 − t02)− aα(tα,2 − t02) +
α−1∑
j=i

hj(tj,2 − t02). (3.8)

Obviously, if i = α

ui = u, (3.9)

and both equation (3.7) and equation (3.8) give the desired result (3.9) since a sum

with the upper summation value smaller than the lower one is zero by definition.

For an arbitrary layer i (lying below or above or coinciding with layer α) we thus

have

ui = u+ ai(ti,2 − t0,2)− aα(tα,2 − t0,2) + sgn(i− α)

ξ−1∑
s=ζ

hs(ts,2 − t0,2), (3.10)

where

sgn(i− α) =


1 if i > α,

0 if i = α,

−1 if i < α,

(3.11)

and ξ = max(i;α), ζ = min(i;α).

Using this relation we can express ui in terms of our basic unknown functions u

and θj, where j ∈ [ζ, . . . , ξ]. In other words the basic unknown functions of the

problem are two components of the vector u and the rotations of each layer θi,

making the number of total unknown functions n + 2. We can further express

relation (3.10) in terms of ζ and ξ as

ui = u+ di,ζ(tζ,2 − t0,2) + di,ξ(tξ,2 − t0,2) +

ξ−1∑
s=ζ+1

di,s(ts,2 − t0,2), (3.12)
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where

di,ζ = sgn(i− α)(hζ − aζ), di,ξ = sgn(i− α)aξ and di,s = sgn(i− α)hs. (3.13)

3.3.2 Kinematic equations

Non-linear kinematic equations according to Reissner [48] are

γi =

εiγi
 = ΛT

i r
′
i −E1 = ΛT

i (t01 + u′i)−E1, (3.14)

κi = θ′i, (3.15)

where εi, γi, κi are the axial and shear strain of the reference axis of i-th layer as

well as the rotational strain (infinitesimal change of the cross-sectional rotation)

as functions of only X1. The differentiation with respect to X1 is denoted as (•)′.

In relations (3.14) and (3.15), the strains of each layer are expressed in terms of

the unknown functions ui and θi or, using (3.12), in terms of the basic unknown

functions u and θj (j ∈ [ζ, . . . , ξ]).

A relationship between these strain measures and the continuum-based strain ten-

sors may be established by incorporating the Bernoulli hypothesis into a specific

strain tensor through an appropriate definition of the deformation gradient (see

e.g. [28, 29, 62] for details). As shown in [28] the relationship becomes particularly

clear for the case of vanishing shear strains (as it does in the Euler–Bernoulli beam

theory), whereby the translational strain measures of (3.14) coincide with the first

column of the Biot strain tensor.

When the shear strains do not vanish, the above Reissner’s strain measures be-

come more difficult to relate to the Biot strain tensor, as that tensor by definition

depends on the rotation obtained from the deformation gradient by polar decom-

position (see e.g. [40]), rather than the rotation of the cross section and in this

case the two rotations differ. Also, it becomes additionally difficult to reconcile

the classical theory of simple materials in which the strain tensors depend only on

the deformation gradient with the fact that the shear-deformable Reissner’s beam

theory is in fact a unidimensional example of a generalised Cosserat continuum.
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As is well-known (see e.g. [40]) all the strain tensor definitions reduce to the same

linear strain-displacement result when higher-terms in the deformation gradient

are set to vanish.

3.3.3 Constitutive equations

The normal strain of a fibre at the distance X2,i from the reference axis of the

layer i is defined as

εi = εi(X1, X2,i) = εi(X1)−X2,iκi(X1), (3.16)

and the normal stress for a linear elastic material is defined as

σi = σi(X1, X2,i) = Eiεi(X1, X2,i), (3.17)

where Ei is Young’s modulus of the material of layer i. From (3.16) and (3.17) it

is obvious that the distribution of normal stresses over the layer’s height is linear.

The stress resultants read

Ni =

∫
Ai

σidA, (3.18)

Ti = GikiAiγi, (3.19)

Mi = −
∫
Ai

X2,iσidA, (3.20)

where Ni, Ti,Mi are the axial force, shear force and bending moment with respect

to the reference axis of layer i, respectively. Gi is the shear modulus of material

of layer i and ki is the shear correction coefficient [12]. Combining relations (3.16-

3.20) we finally obtain 
Ni

Ti

Mi

 =

N i

Mi

 = Ci

γiκi
 , (3.21)
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where Si and Ii are the first and the second moment of area of the cross-section

of layer i, and

Ci =


EiAi 0 −EiSi

0 GikiAi 0

−EiSi 0 EiIi

 , (3.22)

is the constitutive matrix of layer i. By substituting (3.14), (3.15) and (3.12) in

(3.21) we can express the internal forces and bending moments of each layer in

terms of basic unknown functions u and θs (s ∈ [ζ, . . . , ξ]).

Clearly, the above exposition of linear elasticity may be intuitively acceptable, but

a question may be posed as to whether this is a result which may be obtained by

introducing the Bernoulli hypothesis into a continuum-based linear elasticity.

As shown in [28], the answer to this question is affirmative if (i) the beam theory

considered is shear-rigid and (ii) the linear relationship on the continuum level is

established between the Biot strain thensor and the Biot stress tensor. In con-

trast, the popular Saint Venant–Kirchhoff material in which the Green–Lagrange

strain tensor is linearly related to the second Piola–Kirchhoff stress tensor would

not result in the linear elastic relationships between Reissner’ strain measures and

the cross-sectional stress resultants as defined above. Still, the first-order approx-

imation of the Saint Venant–Kirchhoff material as applied to Reissner’s beam, in

which the higher order terms in the strain measures are neglected, indeed coincides

with the linear elastic beam material as given here.

For a shear-deformable beam, as explained in the previous section, it is more

difficult to establish an energy-conjugate stress–strain couple which enjoys a linear

elastic relationship and results in the linear elastic relationship between Reissner’s

strain measures and the stress resultants (3.21). Nonetheless, such an attempt is

made in [30], while in [29], manifestations of a Saint Venant–Kirchhoff material

and a specific hyperelastic material on the loss of linearity between Reissner’s

strain measures and the beam stress resultants have been investigated in detail.

Again, as long as the Reissner’s strain measures are small enough so that the non-

linearities between them and the stress resultants may be neglected, the resulting

linear elastic relationship is precisely the one in which the two elasticity parameters

(say Young’s modulus and Poisson’s ratio) take their correct physical meaning.
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3.3.4 Equilibrium equations - the principle of virtual work

According to the principle of virtual work for a static problem, the work of inter-

nal forces over virtual strains is equal to the work of external forces over virtual

displacements:

V ≡ V int − V ext = 0, (3.23)

where, for a multilayer beam composed of n layers, the virtual work of internal

and external forces are defined as

V int =
n∑
i=1

L∫
0

(γi ·N i + κiMi) dX1, (3.24)

V ext =
n∑
i=1

[ L∫
0

(
ui · f i + θiwi

)
dX1 + ui,0 · F i,0 + θi,0Wi,0+

+ ui,L · F i,L + θi,LWi,L

]
. (3.25)

The summation counter i represents the beam layers while indices 0 and L rep-

resent the beam ends where the boundary point forces F i,0, F i,L and bending

moments Wi,0, Wi,L are applied. The distributed force and moment loads are de-

noted by f i and wi. The virtual strains and curvature are denoted by γi and κi,

and virtual displacements and rotations by ui and θi. Since

sin(ψ + θi) = θi cos(ψ + θi) (3.26)

cos(ψ + θi) = −θi sin(ψ + θi) (3.27)

from (3.4) it follows that

ti,1 = θiti,2, (3.28)

ti,2 = −θiti,1, (3.29)

Λi = θit3Λi, (3.30)

41



where t̂3 =

0 −1

1 0

. Using (3.30), from (3.14) and (3.15) we can then obtain

γiκi
 =

ΛT
i

[
u′i − θit̂3(t01 + u′i)

]
,

θ
′
i,

 = LiDi

uiθi
 (3.31)

where

Li =

ΛT
i 0

0T 1

 , (3.32)

Di =

 d
dX1
I −t̂3 (t01 + u′i)

0T d
dX1

 , (3.33)

and I represents the 2 × 2 unity matrix. Using this relation, the virtual work

becomes

V ≡
n∑
i=1

 L∫
0

〈uT
i θi

〉
DT

i L
T
i

N i

Mi

− 〈uT
i θi

〉f iwi

 dX1−

−
〈
uT
i θi

〉
0

F i,0

Wi,0

− 〈uT
i θi

〉
L

F i,L

Wi,L


]

= 0. (3.34)

Since, using (3.28) and (3.29) from (3.12), it follows that

ui = u− di,ζθζtζ,1 − di,ξθξtξ,1 −
ξ−1∑
s=ζ+1

di,sθsts,1, (3.35)

we can perform the transformation

〈
uT
i θi

〉
=
〈
uT θ1 θ2 . . . θn−1 θn

〉
BT
i = pT

fB
T
i , (3.36)

where pf is the vector of basic virtual unknown functions u and θi and Bi is the

matrix of transformation defined as

Bi =

 I 0 . . . 0 −di,ζtζ,i . . . −di,ξtξ,1 0 . . . 0

0T 0 . . . 0 δiζ . . . δiξ 0 . . . 0

 , (3.37)
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where δij is the Kronecker symbol defined as

δij =

 1 if i = j,

0 otherwise.
(3.38)

Using (3.36) expression (3.34) becomes

V ≡
n∑
i=1

[ L∫
0

pT
fB

T
i

DT
i L

T
i Ci

γiκi
−

f iwi

 dX1 − pT

f,0B
T
i,0

F i,0

Wi,0

−
− pT

f,LB
T
i,L

F i,L

Wi,L


]

= 0. (3.39)

Matrices Bi,0 and Bi,L are evaluated for X1 = 0 and X1 = L, respectively.

3.4 Solution procedure

The presented governing equations are highly non-linear and cannot be solved

in a closed form. Thus, it is necessary to choose in advance the shape of test

functions (u, θi), and later also the shape of trial functions (u, θi). For a finite

number of nodes (N) on the beam it is assumed that the virtual displacements and

rotations are known at the nodes (uj, θi,j) and interpolated between the nodes.

The interpolation of functions of virtual displacements and rotations can be written

as

pf =



u(X1)

θ1(X1)
...

θn(X1)


=

N∑
j=1

Ψj(X1)



uj

θ1,j

...

θn,j


=

N∑
j=1

Ψj(X1)pj, (3.40)

where Ψj(X1) is a (2 + n) × (2 + n) matrix containing interpolation functions

and pj is a vector containing virtual nodal displacements and rotations at node j.

Using interpolations (3.40) we can write the expression for the virtual work (3.39)

as

V ≡
N∑
j=1

pT
j gj = 0, (3.41)
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where

gj =
n∑
i=1

[ L∫
0

ΨT
jB

T
i

DT
i L

T
i Ci

γiκi
−

f iwi

 dX1 −

δj1BT
i,0

F i,0

Wi,0

+

+δjNB
T
i,L

F i,L

Wi,L


] (3.42)

is the vector of residual forces for the node j. Since pj is arbitrary, from (3.41) it

follows that for any node j

gj = 0. (3.43)

Note that vector gj is expressed only in terms of the unknown functions u, θ1, θ2, . . .

. . . , θn−1, θn, which are contained in matrices Di, Bi, Li and in vector

γiκi
.

Relation (3.43) is highly non-linear and is not solvable analytically in terms of the

unknown functions. Thus, to solve the problem numerically the nodal vector of

residual forces is first expanded in Talyor’s series up to a linear term as

gj + ∆gj = 0, j = 1, 2, . . . , N. (3.44)

The linearization of the nodal vector of residual forces ∆gj and element tangent

stiffness matrix K derivation is shown in detail in Appendix A. We finally obtain

∆p = −K−1g, (3.45)

where ∆p is the vector of element nodal increments of the unknown functions

produced in the process of linearization of the nodal vectors of residual forces gj
(see Appendix) and g is the element vector of residual forces. The global stiffness

matrix and the vector of residual forces are assembled from K and g given here

using the standard finite-element assembly procedure (see [80]). The solution is

obtained iteratively using Newton-Raphson method until a satisfying accuracy is

achieved.
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3.5 Numerical Examples

In this section we compare the presented formulation to a non-linear formulation

for multilayer beams proposed by Vu Quoc et al. [76] and to the plane elasticity

theory [67] in linear analysis or the solutions obtained using non-linear plane-

stress elements. As explained earlier, a linear elastic continuum relationship as

defined by the Saint Venant–Kirchoff material is consistent with the linear elastic

relationship in the Reissner beam only for small strains, even though the actual

displacements and rotations may be large. The examples presented here, therefore,

are either of the small strain–small displacement-rotation type or the small strain–

large displacement-rotation type. All results presented in these examples have been

obtained using computer package "Wolfram Mathematica".

3.5.1 Roll-up manoeuvre

A comparison of the presented formulation with [74] and [76] is given for the roll-

up manoeuvre. A cantilever beam is subjected to a pure bending by applying a

moment W = 2EIπ/L at the beam tip, where EI is the bending stiffness and

L is the length of the beam. Such a bending moment forces the beam to roll up

into an exact circle and the beam tip is displaced to coincide exactly with the

clamped end, with the displacement having a component u(L) = −L along the

beam length, a zero transverse component (v(L) = 0), and a rotation θ(L) = 2π.

The results for a single-layer beam and a sandwich beam are shown below.

3.5.1.1 Single-layer beam

Material and geometrical properties are chosen according to [76], where only stiff-

nesses EA = 2, GkA = 2, EI = 2 were given. Thus, h =
√

12, b = 1√
12
,

A = bh = 1, I = bh3

12
= 1, E = Gk = 2 are used in the present work for a rectangu-

lar cross-section, which give exactly the stiffnesses from [76]. The beam of length

L = 1 is divided in five linear elements. Table 3.1 shows the results obtained using

the presented formulation, the results from [76] and the analytical solution. Only
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three iterations in the non-linear Newton-Raphson solution procedure with dis-

placement tolerance 10−6 are needed to obtain convergence. Improved accuracy of

the present formulation in comparison with [76] is probably due to different arith-

metic precision. However, the results show excellent agreement with the analytical

solution. The finite-element deformed shape is a pentagon with the nodes lying

on the circle of the exact deformed shape [76].

Table 3.1: Comparison of the results for the roll-up manoeuvre for a single-
layer beam

u(L) v(L) θ(L)
Present formulation -0.99999 1.9415E-17 6.28319

Vu-Quoc et al. -1.00003 2.92110E-09 6.28300
Exact solution -1 0 6.28319

3.5.1.2 Sandwich beam

A sandwich beam of length L = 1 with three identical layers of height hi = 0.02
√

3,

i = 1, 2, 3 [74] is considered. Using the so-called "normal" moment distribution

over the layers [74]

W1 : W2 : W3 = 7 : 13 : 7, (3.46)

where W = W1 +W2 +W3 is the tip bending moment for the roll-up manoeuvre,

the sandwich beam behaves as a single-layer beam with a plane cross-section in

the deformed state, thus, at the free end, θ1 = θ2 = θ3 = θ = 2π. Using the

stiffnesses from [74] EiAi = 2 · 106, GikiAi = 2 · 106, EiIi = 200, (i = 1, 2, 3), and

height hi, the following geometrical and material properties are chosen bi =
√

3
3
,

Ai = bihi, Ii =
bih

3
i

12
, Ei = Giki = 108, (i = 1, 2, 3). The bending stiffness of

the entire beam is EI = Eibi(3hi)
3/12 = 5400. In Table 3.2 the results obtained

by the present formulation, the formulation proposed by [74] and the analytical

solution are shown. Five linear elements and three iterations are needed for the

displacement convergence tolerance 10−6.

Both the present formulation, as well as [74] show excellent agreement with the

analytical results.
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Table 3.2: Comparison of the results for the roll-up manoeuvre for a sandwich
beam, (i = 1, 2, 3)

u(L) v(L) θi(L)
Present formulation -0.999999 3.29089E-17 6.28319
Vu-Quoc and Deng -0.999999 -2.15292E-09 6.28319

Exact solution -1 0 6.28319

3.5.2 Thick cantilever beam tests

The presented multi-layer beam model can be applied to a homogeneous beam

divided into a finite number of equal laminae. In that case all layers have identical

geometrical and material properties with no interlayer slip and uplift. Since in-

dependent cross-sectional rotations of each layer are allowed, the initially straight

cross-sections are allowed to turn into a piecewise linear cross-section in the de-

formed state. According to the 2D plane-stress theory of elasticity [67], the cross-

sections in the deformed state do not remain planar and the cross-sectional warping

indeed occurs. Obviously, the present multi-layer beam model is capable of simu-

lating this effect piece-wise and here we test how well it may reproduce the actual

2D plane-stress results.

The comparison is additionally made with 2D plane-stress finite-element solution

for various numbers of layers and finite elements. The analysis is first performed

for a geometrically linear problem (small displacements and rotations). After that,

a comparison between the multi-layer beam and the 2D plane-stress finite-element

solution is presented for the non-linear problem with large displacements and ro-

tations.

3.5.2.1 Thick cantilever beam - Linear analysis

A thick cantilever beam with a narrow rectangular cross-section of unit width

subjected to a transverse force F at the free end is considered as shown in Fig.

3.4.
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Figure 3.4: Cantilever beam loaded at the free end

According to [67] the boundary conditions for this problem read

τxy(x,±
h

2
) = 0, (3.47)

σyy(x,±
h

2
) = 0, (3.48)

σxx(L, y) = 0, (3.49)
h
2∫

−h
2

σxx(0, y)dy = 0, (3.50)

h
2∫

−h
2

τxy(x, y)dy = −F, for x = 0, L, (3.51)

and the corresponding stress distribution is

σxx(x, y) =
Fy

I
(L− x), (3.52)

σyy(x, y) = 0, (3.53)

τxy(x, y) =
Fy2

2I
− 3

2

F

A
. (3.54)

A linear distribution of normal stresses in the x-direction over the beam’s height,

zero normal stresses in the y-direction and a parabolic distribution of shear stresses

over the beam’s height is obtained. Normal stresses in the x-direction decrease

linearly from x = 0 to x = L, while the shear stresses remain constant over the

beam’s length. This stress distribution is invariant to the displacement boundary

conditions, which are introduced afterwards. According to [5], if the displacement
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boundary conditions are given as

u(0, y) = v(0, y) = 0, (3.55)

the displacement functions cannot be determined. The displacement boundary

conditions have to be defined at discrete points with specified x and y co-ordinates.

There are several possibilities to approximately model fully clamped end, and here

we use

u(0, 0) = 0, (3.56)

v(0, 0) = 0, (3.57)(
∂u

∂y

)
x=0
y=0

= 0, (3.58)

where the displacements and the cross-sectional rotation are inhibited only at the

point (0,0). Then, the displacement functions read

u(x, y) =
Fy

EI

[
Lx− x2

2
+
y2

6
(2 + ν)

]
, (3.59)

v(x, y) =
F

EI

[
−Lx

2

2
+
x3

6
+
νy2

2
(x− L)

]
− 3

2

Fx

GA
. (3.60)

Obviously, the cross-sectional warping is allowed over the height of the "clamped"

end, as of course is also over all the other cross-sections. To model this prob-

lem numerically using the multi-layer beam elements, the beam from Fig. 3.4 is

divided in N linear beam elements and n equal laminae to obtain a multilayer

beam. Also, the mesh for 2D plane-stress finite-element analysis is made of N

columns and n rows, and the calculation is carried out using the package FEAP

[80]. The boundary conditions for the multi-layer composite beam and for the

two-dimensional finite-element analysis are given according to (3.47)-(3.51) and

(3.56)-(3.58). The distributed load at the beam ends is applied as the correspond-

ing nodal load, while inhibiting the displacements and the cross-sectional rotation

of the middle layer(s) at the left end of the beam. Positions of the reference axes

for layers are ai = hi/2, except for the two middle layers where an
2

= hn
2
and

an
2
+1 = 0 (even number of layers is used). It was shown that different choices of

the main layer α do not affect the results. Shear correction coefficient ki = 1 is
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used for the multi-layer beam model in all examples.

For the numerical values L = 100, h = 50, b = 1, F = −0.1, E = 1, ν = 0,

the displacements at the edges of the left-hand end cross-section (0,±h
2
) and at

the beam’s axis at the free end (L, 0) for the multi-layer beam and 2D plane-

stress finite-element models are shown in Tables 3.3 and 3.4. Two types of 2D

plane-stress finite elements from the FEAP library are used; the displacement

based element [80] and the element based on the enhanced strain concept [59, 80].

The analytical solutions read u(0,±h
2
) = ±0.05, v(0,±h

2
) = 0, u(L, 0) = 0 and

v(L, 0) = −3.8 [67]. It can be noticed that with considerably smaller number

of degrees of freedom (D.O.F.), in comparison with the 2D plane stress finite-

element models, the multilayer beam model presents a better approximation of the

analytical solution. Since in this example the transverse strain is not considered

(ν = 0), the two-dimensional domain can be accurately modelled using the multi-

layer beam model, which, just as the theory of elasticity solution, gives zero vertical

displacements over the entire left-hand end cross-section. The 2D plane-stress

finite-element models give zero vertical displacement at the left-hand end cross-

section only at the beam’s axis (0, 0), while for the other positions in the cross-

section only converge towards this result as the finite-element mesh is refined. Fig.

3.5 shows the warping of the left-hand end cross-section of the beam for the models

considered.

Table 3.3: Displacements at the left-hand end of the beam for the multilayer
beam model and the 2D plane-stress finite-element models for ν = 0 (analytical

solution: u = ±0.05, v = 0)

Mesh Multi-layer beam 2D displacement-based elements 2D enhanced-strain elements
n×N D.O.F. u(0,±h

2
) v(0,±h

2
) D.O.F. u(0,±h

2
) v(0,±h

2
) D.O.F. u(0,±h

2
) v(0,±h

2
)

4×2 18 ± 0.0375 0 30 ±0.1022 0.0013 30 ±0.0374 -0.0018
8×4 50 ± 0.0469 0 90 ±0.0950 0.0070 90 ±0.0463 -0.0012
16×8 162 ± 0.0492 0 306 ±0.0715 0.0061 306 ±0.0489 -0.0005
32×16 578 ± 0.0498 0 1122 ±0.0578 0.0029 1122 ±0.0497 -0.0002

Table 3.4: Displacements at the free end of the beam’s axis for the multilayer
beam model and the 2D plane-stress finite-element models for ν = 0 (analytical

solution: u = 0, v = −3.8)

Mesh Multi-layer beam 2D displacement-based elements 2D enhanced-strain elements
n×N D.O.F. u(L, 0) v(L, 0) D.O.F. u(L, 0) v(L, 0) D.O.F. u(L, 0) v(L, 0)
4×2 18 0 -3.5500 30 0 -2.7471 30 0 -3.5506
8×4 50 0 -3.7375 90 0 -3.5035 90 0 -3.7368
16×8 162 0 -3.7844 306 0 -3.7310 306 0 -3.7840
32×16 578 0 -3.7961 1122 0 -3.7837 1122 0 -3.7960
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Figure 3.5: Shape of the warped cross-section of the left-hand end at the
beam according to the theory of elasticity, the multi-layer beam model and the

2D plane-stress finite-element models for different meshes and ν = 0

Table 3.5: Displacements at the left-hand end of the beam for the multilayer
beam model and 2D plane-stress finite-element models for ν = 0.25 (analytical

solution: u = ±0.05625, v = −0.075)

Mesh Multi-layer beam 2D displacement-based elements 2D enhanced-strain elements
n×N D.O.F. u(0,±h

2
) v(0,±h

2
) D.O.F. u(0,±h

2
) v(0,±h

2
) D.O.F. u(0,±h

2
) v(0,±h

2
)

4×2 18 ± 0.0469 0 30 ±0.1080 -0.0438 30 ±0.0392 -0.0630
8×4 50 ± 0.0586 0 90 ±0.0957 -0.0711 90 ±0.0538 -0.0830
16×8 162 ± 0.0615 0 306 ±0.0731 -0.0837 306 ±0.0552 -0.0901
32×16 578 ± 0.0623 0 1122 ±0.0614 -0.0899 1122 ±0.0550 -0.0926

The same comparison is also given for a more realistic value of the Poisson’s

ratio of ν = 0.25. The displacements at the left-hand end cross-section and the

free-end displacements at the beam’s axis are given in Tables 3.5 and 3.6. The

corresponding values according to the theory of elasticity are u(0,±h
2
) = ±0.05625,

v(0,±h
2
) = −0.075, u(L, 0) = 0 and v(L, 0) = −3.95. In this example the multi-

layer beam gives even better results at the free-end, but at the left-hand end it

cannot return the non-zero vertical displacements because in the beam theory the

transverse strains are not considered. The 2D plane-stress finite-element models

give a rather good approximation of the horizontal displacements at the left-hand

end cross-section, while the vertical displacements do not converge to the analytical

solution.

An additional comparison between the multi-layer beam and the 2D plane-stress

finite elements is given for the case of a fully clamped thick beam (see Fig. 3.4).

The left-hand end cross-section is fully clamped (u(0, y) = v(0, y) = 0) and the

force is applied exactly on the beam’s centroidal axis. Since the solution of this
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Table 3.6: Displacements at the free end of the beam’s axis for the multilayer
beam model and 2D plane-stress finite-element models for ν = 0.25 (analytical

solution: u = 0, v = −3.95)

Mesh Multi-layer beam 2D displacement-based elements 2D enhanced-strain elements
n×N D.O.F. u(L, 0) v(L, 0) D.O.F. u(L, 0) v(L, 0) D.O.F. u(L, 0) v(L, 0)
4×2 18 0 -3.6875 30 0 -2.8961 30 0 -3.4673
8×4 50 0 -3.8844 90 0 -3.5244 90 0 -3.6842
16×8 162 0 -3.9336 306 0 -3.6984 306 0 -3.7342
32×16 578 0 -3.9459 1122 0 -3.7383 1122 0 -3.7461

problem according to the theory of elasticity does not exist (see [5]), the 2D plane-

stress finite-element solution using enhanced-strain elements with a fine (400×200)

mesh is taken as a reference result. The reference displacements of the beam’s

axis at the free end for ν = 0 and ν = 0.25 read v(L, 0) = −3.9447 and v(L, 0) =

−3.8039, respectively, while u(L, 0) = 0 in both cases. The values of the vertical

displacements of the beam’s axis of the free end of the beam are given in Table 3.7

for the multi-layer beam model and the 2D plane-stress finite-element models using

the displacement-based and enhanced-strain formulations for ν = 0 and ν = 0.25.

The horizontal displacements of the beam’s axis for the multi-layer beam model

as well as for the 2D plane-stress finite-element models are zero. Figure 3.6 shows

the deformed cross-section at the free end for ν = 0.25 for the multilayer beam

model and two-dimensional finite-element models. It is noticed that the multi-

layer beam model presents a better approximation of the reference solution for

rough meshes in comparison with the 2D plane-stress finite-element models, with

considerably smaller number of degrees of freedom. For finer meshes, it is obvious

that the multi-layer beam model expectedly converges to a different solution than

the two-dimensional finite-element solutions.

Table 3.7: Vertical displacements at the free end of the beam’s axis for the
multilayer beam model and two-dimensional finite-element models (reference

solution: v = −3.9447 for ν = 0, v = −3.8039 for ν = 0.25)

Mesh Multi-layer beam 2D displacement-based elements 2D enhanced-strain elements
n×N D.O.F. ν = 0 ν = 0.25 D.O.F. ν = 0 ν = 0.25 D.O.F. ν = 0 ν = 0.25
4×2 18 -3.4532 -3.5658 30 -2.4414 -2.5104 30 -3.4723 -3.2711
8×4 50 -3.6195 -3.7362 90 -3.2923 -3.2242 90 -3.6587 -3.4925
16×8 162 -3.6616 -3.7795 306 -3.6293 -3.5076 306 -3.7323 -3.5872
32×16 578 -3.6722 -3.7904 1122 -3.7545 -3.6200 1122 -3.7823 -3.6450

For the same example, a comparison between the results obtained using the re-

duced and the full numerical integration is shown n Table 3.8. For the reduced

integration N−1 and for the full integration N integration points are used (where
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Figure 3.6: A comparison between the deformed cross-section of the free end
of the beam according to the theory of elasticity and the multi-layer beam model
and the 2D plane-stress finite-element models for different meshes and ν = 0.25

N is the number of interpolation nodes). Using full integration usually causes

the so-called shear locking, which is more pronounced in case of very thin beams.

Since in this example the beam is thick (L/h = 2), the results obtained using the

full integration are still worse than using the reduced integration (especially for the

most coarse meshes), although the "locking" (very small displacements) does not

occur. The shear locking problem can be avoided by using the linked interpolation

for the unknown functions with the full integration. Papa and Jelenić [41] have

derived the linked interpolation for an arbitrary number of nodes. According to

[41], the interpolation functions for the displacements of a two noded plane beam

element can be derived as

u(X1) =

u(X1)

v(X1)

 =
L−X1

L

u1

v1

+
X1

L

u2

v2

− X1(L−X1)

2L

 0

θ2 − θ1


(3.61)

where u1, v1, θ1 and u2, v2, θ2 denote the displacements and the cross-sectional ro-

tation at the first and the second node, respectively. The cross-sectional rotations

are interpolated using the Lagrangian interpolation. In the case of a multi-layer

beam with a rigid interconnection, the displacements of the main layer α are in-

terpolated using the nodal cross-sectional rotations θα,1 and θα,2, which can be

written as

u(α) = I1(X1)uα,1 + I2(X1)uα,2 + I3(X1)δθα, (3.62)
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where

I1(X1) = L−X1

L
, I2(X1) = X1

L
, I3(X1) = X1(L−X1)

2L
, δθα =

 0

θα,1 − θα,2

 .

(3.63)

Table 3.8 shows that, in comparison with the Lagrangian interpolation, the linked

interpolation for the full integration gives significantly better results, although

they are still worse than the results obtained using the reduced integration. The

same phenomenon was also observed in non-linear analysis of homogeneous beams

[42]

Table 3.8: Vertical displacent at the free end of a cantilever beam, v(L),
obtained using the Lagrangian and the linked interpolation for reduced and full

integration (ν = 0).

Lagrangian interpolation Linked interpolation
Mesh Red. int. Full int. Red. int. Full int.
4× 2 -3.4532 -2.4209 -3.4532 -3.4446
8× 4 -3.6195 -3.2526 -3.6195 -3.6154
16× 8 -3.6616 -3.5595 -3.6616 -3.6602
32× 16 -3.6722 -3.6459 -3.6722 -3.6717

3.5.2.2 Thick cantilever beam - Non-linear analysis

In this section we investigate the behaviour of the thick cantilever beam from Fig.

3.4 under a load causing large displacements and rotations (F = 1). The left-hand

end cross-section is fully clamped (u(0, y) = v(0, y) = 0) and the force is applied

exactly on the beam’s axis. Since the theory of elasticity gives a solution only in

case of small deformations and rotations, for non-linear analysis a fine (n × N =

400× 200) two-dimensional finite-element mesh is used as a reference. Solid two-

dimensional element based on the mixed three-field displacement–pressure–volume

(u − p − θ) formulation [60, 79] from the FEAP element library is used to solve

the problem with large deformations. A comparison between the multi-layer beam

solution and the solution for the 2D plane-stress finite element is shown in Table

3.9 for the free end displacements at the beam’s axis with ν = 0. The reference

results read u(L, 0) = −5.1629 and v(L, 0) = −37.894. In Fig. 3.7 are shown

the shapes of the cross-sections for the compared models. The local deformation
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around the point of the load application (L, 0) is in this example quite pronounced.

It is noticed that for coarse meshes the multi-layer beam solution gives a better

approximation of the reference solution, while for the finer meshes it expectedly

converges to the values different from those proposed by the 2D plane-stress finite-

element solution. Again, the number of degrees of freedom for the multi-layer beam

is considerably smaller than for the 2D plane-stress finite-element mesh.

Table 3.9: Displacements at the free end of the beam for the multilayer beam
model and 2D plane-stress finite-element model for ν = 0 (reference solution:

u = −5.1629, v = −37.894)

Mesh Multi-layer beam 2D mixed u− p− θ element
n×N D.O.F. u(L, 0) v(L, 0) D.O.F. u(L, 0) v(L, 0)
4×2 18 -5.1656 -31.8751 30 -2.1812 -23.995
8×4 50 -5.6118 -33.1968 90 -4.2232 -31.696
16×8 162 -5.6546 -33.5993 306 -5.0835 -34.761
32×16 578 -5.6084 -33.7709 1122 -5.3001 -36.091

Figure 3.7: A comparison between the deformed cross-section of the free end of
the beam according to the the multi-layer beam model and the two-dimensional

finite-element model for different meshes

If we introduce the Poisson’s ratio ν = 0.25, we obtain the results presented in

Table 3.10. The reference results, obtained with the 2D plane-stress finite element

based on the mixed u − p − θ formulation for the large deformations and mesh

n × N = 80 × 40 read u(L, 0) = −5.0326 and v(L, 0) = −37.202. The multi-

layer beam formulation with relatively small number of degrees of freedom again

proves to be a good approximation of the 2D plane-stress solution obtained with

considerably more degrees of freedom.

The actual deformation of the cantilever for different meshes of the multi-layer

beams is shown in Fig.3.8.
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Table 3.10: Displacements at the right-hand end of the beam for the multilayer
beam model and the 2D plane-stress finite-element models for ν = 0.25 (reference

solution: u = −5.0326, v = −37.202)

Mesh Multi-layer beam 2D mixed u− p− θ elements
n×N D.O.F. u(L, 0) v(L, 0) D.O.F. u(L, 0) v(L, 0)
4×2 18 -5.4475 -32.8602 30 -2.3515 -25.348
8×4 50 -5.8894 -34.2202 90 -4.0217 -31.63
16×8 162 -5.9232 -34.6380 306 -4.6672 -34.157
32×16 578 -5.8729 -34.8275 1122 -4.8179 -35.342

Figure 3.8: The deformed shape of the multi-layer beam model for different
meshes and ν = 0.25

3.6 Conclusions

A geometrically exact multi-layer beam finite element with rigid connection be-

tween the layers has been presented. Arbitrary position of the layers’ and the

composite beam’s reference axes allows for arbitrary positioning of the applied

loading. It have been shown that the kinematic constraint relating the displace-

ment vector of an arbitrary layer and the displacement vector of the beam reference

line may be written in a unique way regardless of the positions of the layer and

the beam reference axes. This expression, in which the rotations of all the layers

between the two reference lines also take place, makes it very easy to assemble the

composite beam element from the original Reissner’s beam theory using the prin-

ciple of virtual work and perform the linearization needed for the Newton-Raphson
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solution procedure.

The element has been verified against the results in [75, 76] and its capabilities

tested on a thick beam example against analytical and numerical results coming

from 2D elasticity. While the beam theory utilised obviously cannot recognise the

existence of the transverse normal stresses and strains, it shows remarkable ability

to capture the cross-sectional warping effect and give good approximation of 2D

elasticity results using far less degrees of freedom.
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4 NON-LINEAR ANALYSIS OF MULTI-

LAYER BEAMS WITH COMPLIANT

INTERCONNECTIONS

4.1 Introduction

In this section, a model for multi-layer beams with interconnection allowing for de-

lamination between the layers is presented. Bulk material is modelled using beam

finite elements, while the cohesive zone model embedded into interface elements

[2], which allows single- and mixed-mode delamination, is used for the interconnec-

tion. The number of layers and interconnections is arbitrary, where each layer and

interconnection can have different material and geometrical properties. A linear-

elastic constitutive law is used for the bulk material and the geometrically exact

Reissner’s kinematic equations are linearised (small displacements and rotations)

reducing to the Timoshenko’s beam theory equations for each layer. Since the the

constitutive law for the interconnection is non-linear, the problem is solved numer-

ically using the Newton-Raphson solution procedure with the modified arc-length

method. After the problem description, the governing equations are derived, the

solution procedure is explained in detail and the results from the numerical ex-

amples are compared to the results from the literature , where 2D plane-stress

elements for the bulk material are used.
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4.2 Problem description

4.2.1 Position of a layer of the composite beam in the ma-

terial co-ordinate system

An initially straight multi-layer beam of length L in which the layers are allowed to

move with respect to one another depending on the properties of the interconnec-

tion is considered. The beam is composed of n layers and n− 1 interconnections.

An arbitrary layer is denoted as i, while an arbitrary interconnection, placed be-

tween layers i and i+ 1, is denoted as α (see Fig. 4.1).

Figure 4.1: Position of a segment of a multi-layer beam with interface in the
material co-ordinate system

Position of the layers with respect to the axes X1, X2 and X3 is explained in detail

in section 3.2.1 according to Fig. 4.1. Definition of geometrical and material

properties of layers is also already explained in section 3.2.1. The height and

the width of an interconnection are denoted as sα and bα, respectively. Thus,

it is assumed that the interconnections have rectangular cross-sections, while the

layer’s cross-sections are arbitrary, but with a common principal axis X2.

4.2.2 Position of a layer of the composite beam in the spatial

co-ordinate system

According to Fig. 3.2 from section 3.2.2, the reference axes of all layers in the

initial undeformed state are defined by the unit vector t01 which closes an angle

ψ with respect to the axis defined by the base vector e1 of the spatial co-ordinate
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system. Definition of the base vectors t0j, ti,j, and transformation matrices Λ0

and Λi, where i denotes the layer and j = 1, 2, is given in expressions 3.3 and 3.4

from section 3.2.2. For the geometrically linear case (sin θi ≈ θi and cos θi ≈ 1) Λi

becomes

Λi =

1 −θi
θi 1

Λ0. (4.1)

Finally, the vector of displacement of the layer’s reference axis, ui(X1), is defined

as (3.6) according to Fig. 3.2.

4.3 Governing equations

Governing equations of the model consist of:

1. Assembly equations, which define how the layers and the interconnections

are assembled into a multi-layer beam,

2. Governing equations for the layers, where kinematic, constitutive and

equilibrium relations for the layers are defined and

3. Governing equations for the interconnection, where kinematic, con-

stitutive and equilibrium relations for the interconnection are defined.

The derivation of the governing equations is explained in detail in the following

sections.

4.3.1 Assembly equations

Undeformed and deformed state of a segment of the multi-layer beam is shown in

Fig. 4.2.

The following relationships between the displacements of the layers can be deduced

from Fig. 4.2:

uT,α = ui+1 + (t02 − ti+1,2)ai+1, (4.2)

uB,α = ui + (ti,2 − t02)(hi − ai), (4.3)
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Figure 4.2: Undeformed and deformed state of a multi-layer beam with inter-
connection segment

where ui and ui+1 denote the displacements of the reference axes of the layers

lying above and below the interconnection α, while uT,α and uB,α denote the

displacements of the top and the bottom of the interconnection α. According to

Fig. 4.2, vector zα can be expressed using (4.2) and (4.3) as

zα = sαt02 + uT,α − uB,α =

= ui+1 − ui + ai+1(t02 − ti+1,2) + (hi − ai)(t02 − ti,2) + sαt02. (4.4)

4.3.2 Governing equations for layers

4.3.2.1 Kinematic equations

Non-linear kinematic equations according to Reissner’s beam theory [48] are al-

ready presented in (3.14) and (3.15) from section 3.3.2. For the geometrically

linear case (sin θi ≈ θi and cos θi ≈ 1) expression (3.14) reduces to

γi = ΛT
0 (u′i − θit02), (4.5)

showing that, in this case, Reissner’s beam theory coincides with Timoshenko’s.
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4.3.2.2 Constitutive equations

Constitutive law for the layers in linear elastic and it is, together with the definition

of stress resultants and the constitutive matrix Ci, already presented in section

3.3.3.

4.3.2.3 Equilibrium equations

Equilibrium equations are derived from the principle of virtual work as:

V L
i ≡V int

i − V ext
i =

L∫
0

(γi ·N i + κiMi) dX1 −
L∫

0

(
ui · f i + θiwi

)
dX1−

− ui(0) · F i,0 − θi(0)Wi,0 − ui(L) · F i,L − θi(L)Wi,L, (4.6)

where V L
i is the virtual work of the layer i composed of the virtual work of internal

forces V int
i and the virtual work of external forces V ext

i on layer i. γi and κi denote

the virtual strains, while ui and θi denote the virtual displacements and rotations,

which are functions of X1. The distributed external loads over the beam’s length

are denoted as f i and wi, while the loads concentrated on the beam ends by F i,j

and Wi,j, j = 0, L. According to expressions (4.5) and (3.15) for a geometrically

linear problem, the virtual strains becomeγiκi
 =

ΛT
0 0

0T 1

 d
dX1
I −t02

0T d
dX1

uiθi

 = L(Dpi), (4.7)

and expression (4.6) can be written as

V L
i =

L∫
0

(Dpi)
TLT

N i

Mi

− pT
i

f iwi

 dX1−pT

i (0)

F i,0

Wi,0

−pT
i (L)

F i,L

Wi,L

 .

(4.8)

The resulting expression is non-linear in terms of the basic unknown functions (ui

and θi) and cannot be solved in a closed form. Thus, the shape of virtual (test)

functions (ui and θi)is chosen in advance assuming that for a finite number of

nodes N the virtual displacements and rotations are known at the nodes (ui,j and

62



θi,j, j ∈ {1, N}) and interpolated between them as

pi
.
=

N∑
j=1

Ψj(X1)

ui,jθi,j

 =
N∑
j=1

Ψj(X1)pi,j, (4.9)

where Ψj is the matrix of interpolation functions of dimensions 3× 3. Further,

pi =
[
δi1I δi2I . . . δinI

]


p1

p2

...

pn


.
=
[
δi1I δi2I . . . δinI

] N∑
j=1

Ψj



p1,j

p2,j

...

pn,j


=

=
N∑
j=1

[
δi1Ψj δi2Ψj . . . δinΨj

]
pG,j =

N∑
j=1

P i,jpG,j, (4.10)

where pG,j = 〈p1,j p2,j . . .pn,j〉
T is the nodal global vector of virtual unknown

functions and δij is the Kronecker delta defined in (3.38). Now, expression (4.8)

becomes

V L
i =

N∑
j=1

pT
G,j

{ L∫
0

(DP i,j)
TLT

N i

Mi

−
f iwi


 dX1−

− P T
i,j(0)

F i,0

Wi,0

− P T
i,j(L)

F i,L

Wi,L


}

=
N∑
j=1

pT
G,jg

L
i,j, (4.11)

where gLi,j it the nodal vector of residual forces for the layer i which will be later

introduced to the global equilibrium equation of the multi-layer beam with inter-

connection.

4.3.3 Governing equations for the interconnection

Interface finite elements by Alfano and Crisfield [2]with embedded cohesive zone

model (CZM) are adopted in the present multi-layer beam model. The interface

is a zero-thickness (sα = 0) layer with a non-linear constitutive law allowing for

delamination in modes I and II including a mixed-mode delamination. Thus,

depending on the conditions on the interface, the connection between layers can
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be linear-elastic and after the softening of the interconnection material a complete

damage may occur.

4.3.3.1 Kinematic equations

For a zero-thickness interconnection α, from Fig. 4.2, the vector of relative dis-

placements between the upper and the lower edge of the interconnection follows

as zα = uT,α − uB,α, from where the vector of the local relative displacements is

defined as

dα =

d1,α

d2,α

 = Λαzα = Λα(uT,α − uB,α), (4.12)

where d1,α and d2,α are relative displacements of the interconnection in tangential

and normal direction, respectively, while Λα is an orientation that has to be defined

based on the orientations Λi and Λi+1. In a geometrically linear setting Λα = Λ0

and dα = Λ0(uT,α − uB,α).

4.3.3.2 Constitutive equations

For the interconnection, a constitutive law allowing for delamination is adopted.

In general, any deformation of the crack surfaces can be viewed as a superposition

of three basic delamination modes [8], which are defined as follows:

1. Opening mode, I. The crack surfaces separate perpendicularly to the plane

of delamination (direction X2),

2. Sliding mode, II. The crack surfaces slide relatively to each other in the

longitudinal direction (along the axis X1),

3. Tearing mode, III. The crack surfaces slide relatively to each other in the

transverse direction (along the axis X3).

Obviously, in case of a planar delamination problem, only the first two delam-

ination modes are considered. A cohesive-zone model (CZM), embedded in the

interface finite elements by Alfano and Crisfield [2], is used in the present work and

shown in Fig. 4.3 for an arbitrary interconnection α. The CZM approach assumes
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that a cohesive damage zone develops near the crack tip. The bilinear diagram

represents an approximation of the real physical behaviour, where the crack is not

completely brittle, but the cohesive tractions ωi,α (i = 1, 2) first increase from

zero to a failure point that is represented by the cohesive strength ω01,α, at which

they reach a maximum before they gradually decrease back to zero following the

post peak softening behaviour, which results in complete separation (see Fig. 4.3).

According to (4.12), index 1 is associated with tangential delamination (mode II)

index 1, while for normal delamination (mode I) index 2 is used. For mode II

delamination (see Fig. 4.3.a) the constitutive law is assumed as same independent

of the direction of the delamination, while for mode I, delamination can occur only

in case of tension (see Fig. 4.3 b). In case of compression, no penetration physi-

cally exists, which means that the corresponding stiffness is infinite. However, in

the present model this stiffness is taken as equal to the one taken in tension. The

latter is needed to monitor the stress in the direction orthogonal to the axis X1

and, when they exceed the mode I strength, to utilise the damage law given in Fig.

4.3 b. Obviously, this stiffness must be high enough to prevent interpenetration

of the crack faces. However, an overly high value can lead to numerical prob-

lems. Several guidelines have been proposed for obtaining the penalty stiffness

of a cohesive element (see e.g. [68]). The energy release rate criterion of linear

elastic fracture mechanics (LEFM) for crack propagation [8] is indirectly used by

equating the areas under the traction-relative displacement diagram to the critical

energy release rates Gc1,α and Gc2,α (see Fig. 4.3) as

Gci,α =
1

2
ω0i,αdci,α, (4.13)

where i = 1, 2 and α denotes an interconnection in case of multiple interconnec-

tions.

The current state of delamination is expressed using a parameter which combines

delamination in both modes as

βα(τ ′) =

[(
|d1,α(τ ′)|
d01,α

)η
+

(
〈d2,α(τ ′)〉
d02,α

)η] 1
η

− 1, (4.14)
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Figure 4.3: Constitutive law for the interconnection: a) mode II (direction 1)
i b) mode I (direction 2)

where in the present work η = 2 is used, τ ′ is the pseudo-time variable and 〈•〉 is

the McCauley bracket defined as

〈x〉 =

 x if x ≥ 0,

0 if x < 0
. (4.15)

Expression (4.14) determines the current state of delamination for single-mode

(d1,α or d2,α equals zero) as well as for the coupled, mixed-mode delamination,

where the overall damage at the interconnection is affected by both modes. This

means that an interface element which is completely damaged in one mode has no

bearing capacity in the other mode either. Damage of the interconnection is irre-

versible, thus, for a pseudo-time parameter τ , the maximum rate of delamination

in the pseudo-time history is expressed as

βα(τ) = max
0≤τ ′≤τ

βα(τ ′). (4.16)

An example of the relative displacement history with the corresponding traction

response is shown in Fig. 4.4. After reaching the value d∗, for decreasing values of

di,α an elastic unloading occurs with a reduced stiffness represented by the secant

from the current point on the softening branch to the origin. Such unloading is

specific to damage models, and is notably different to the plasticity models, where

an amount of deformation (the plastic deformation) also remains irreversible. Af-

ter the critical value of the relative displacement has been reached, the traction

vanishes as a consequence of the total damage of the interconnection.

The tractions at the interconnection ωα = 〈ωα,1 ωα,2〉T are calculated according
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Figure 4.4: Relative displacement-pseudo time diagram (a) and the corre-
sponding traction response (b)

to the following constitutive law:

ωα =

 Sαdα if βα ≤ 0,

[I −Gα]Sαdα if βα > 0,
(4.17)

where

Sα =

S1,α 0

0 S2,α

 , Si,α =
ω0i,α

d0i,α

, Gα =

g1,α 0

0 〈sgn(d2,α)〉g2,α

 ,
gi,α = min

{
1,

dci,α
dci,α − d0i,α

βα
1 + βα

}
i = 1, 2. (4.18)

The case βα ≤ 0 corresponds to the linear-elastic behaviour of the interconnec-

tion, while βα > 0 indicates the ongoing delamination and damage process at the

interconnection. Parameter gi,α ∈ 〈0, 1] indicates the degree of the damage, where

gi,α = 1 means that total damage of the interconnection has occurred and the con-

nection between layers is completely lost (total delamination - ωα = 0). Matrix

Sα defines the interconnection stiffness for the linear elastic range for both direc-

tions, where parameter S2,α represents the penalty stiffness parameter for mode I.

Factor 〈sgn(d2,α)〉 in theGα matrix assures that after the delamination has started

(βα > 0), the penetration between layers is partially prevented depending on the

penalty stiffness parameter contained in matrix Sα (see Fig. 4.3.b). The pro-

posed constitutive law (4.17), for the case of single-mode delamination (ω1,α = 0

or ω2,α = 0) reduces to expressions which exactly describe the behaviour shown in

Fig. 4.3.a) and 4.3.b) for modes II and I, respectively, with unloading as shown in

Fig. 4.4.
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4.3.3.3 Equilibrium equations

Equilibrium equations for the interconnection are again derived from the principle

of virtual work as

V C
α = bα

L∫
0

dα · ωαdX1, (4.19)

where V C
α denotes the virtual work of internal forces of the interconnection α.

According to (4.12), virtual relative displacements of the interconnection become

dα = Λ0

(
ui+1 − ui + θi+1ai+1t01 + θi(hi − ai)t01

)
= Λ0BαpC,α (4.20)

where

Bα =
[
−I t01(hi − ai) I t01ai+1

]
, pC,α =

 pi

pi+1

 , i = α. (4.21)

Expression (4.19) can be now written as

V C
α = bα

L∫
0

pT
C,αB

T
αΛT

0ωαdX1. (4.22)

Since expression (4.22) is non-linear in terms of the basic unknown function, the

virtual functions are interpolated and according to (4.10) the following expression

is obtained

pC,α =

 pi

pi+1

 .
=

N∑
j=1

 P i,j

P i+1,j

pG,j =
N∑
j=1

Rα,jpG,j, (4.23)

which transforms expression (4.22) into

V C
α =

N∑
j=1

pT
G,jbα

L∫
0

RT
j,αB

T
αΛT

0ωαdX1 =
N∑
j=1

pT
G,jg

C
α,j, (4.24)

where gCα,j is the nodal vector of residual forces for the interconnection α which

will be later introduced to the global equilibrium equation of the multi-layer beam

with interconnection.
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4.4 Solution procedure

To solve the system of governing equations for the multi-layer beam with inter-

connection the vector of residual forces and the tangent stiffness matrix have to be

determined. The problem is then solved numerically which is explained in detail

in the following sections.

4.4.1 Determination of the vector of residual forces and the

tangent stiffness matrix

Total virtual work for the multi-layer beam analysed is composed by the virtual

work of n layers (4.11) and the virtual work of n− 1 interconnections (4.24) and

it can be written as

V TOT =
n∑
i=1

[
V L
i + (1− δin)V C

i

]
=

N∑
j=1

pT
G,j

n∑
i=1

[
gLi,j + (1− δin)gCi,j

]
. (4.25)

Since the total virtual work for the multi-layer beam must equal zero (V TOT = 0)

and the choice of the test parameters pG,j is arbitrary it follows that

gj =
n∑
i=1

[
gLi,j + (1− δin)gCi,j

]
= 0, (4.26)

where gj is the nodal vector of residual forces for the multi-layer beam which

is composed of the nodal vector of internal forces qintj and the nodal vector of

external forces qextj as

gj = qintj − qextj = 0 (4.27)

where

qintj =
n∑
i=1

 L∫
0

(DP i,j)
TLT

N i

Mi

 dX1 + (1− δin)bi

L∫
0

(Λ0BiRi,j)
TωidX1

 ,

qextj =
n∑
i=1

 L∫
0

P T
i,j

f iwi
 dX1 + P T

i,j(0)

F i,0

Wi,0

+ P T
i,j(L)

F i,L

Wi,L


 . (4.28)
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Expression (4.27) represents the equilibrium equation for the multilayer beam at

the node-level and is highly non-linear and not solvable analytically in terms of

the basic unknown functions. Thus, in order to solve the problem numerically, the

nodal vector of residual forces is expanded in Talyor’s series up to a linear term as

in (3.44), and since the unknown function are contained only in the nodal vector

of internal forces

∆qextj = 0 and ∆gj = ∆qintj . (4.29)

The unknown functions are contained in N i and Mi which are linearised as∆N i

∆Mi

 = Ci

∆γi

∆κi

 = Ci

ΛT
0 (∆u′i −∆θit02)

∆θ′i

 = CiL(D∆pi), (4.30)

where L and D are given in (4.7) and ∆pi = 〈∆ui ∆θi〉T, and in the vector of

contact tractions ωi which is linearised as

∆ωi =


Si∆di if βi ≤ 0,

(I −Gi)Si∆di if βi > 0 and βi < βi,

(I −Gi)Si∆di −∆GiSidi if βi > 0 and βi = βi.

(4.31)

Linearisation of the vector of the relative displacements at the interconnection di

is obtained analogously as in (4.20) and (4.23), thus

∆di = Λ0Bi∆pC,i = Λ0Bi

N∑
k=1

Ri,k∆pG,k, (4.32)

where ∆pG,k = 〈∆p1,k ∆p2,k . . . ∆pn,k〉
T. To linearise Gi first the parameter

βi has to be linearised as

∆βi =
1

η

[(
|d1,α|
d01,α

)η
+

(
〈d2,α〉
d02,α

)η] 1
η
−1

∆

[(
|d1,α|
d01,α

)η
+

(
〈d2,α〉
d02,α

)η]
=

=
(
βi + 1

)1−η ( |d1,i|η−1

dη01,i

∆|d1,i|+
〈d2,i〉η−1

dη02,i

∆〈d1,i〉
)

(4.33)

which with

∆|d1,i| =
|d1,i|
di,1

∆d1,i and ∆〈d2,i〉 =
〈d2,i〉
d2,i

∆d2,i (4.34)
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finally gives

∆βi =
(
βi + 1

)1−η
vT
i ∆di (4.35)

where

vT
i =

〈
1

d1,i

(
|d1,i|
d01,i

)η
1

d2,i

(
〈d2,i〉
d02,i

)η〉
and ∆di =

∆d1,i

∆d2,i

 . (4.36)

After that it can be easily shown that

∆

(
βi

1 + βi

)
=

∆βi
(1 + βi)

2
=

1

(1 + βi)
η+1
vT
i ∆di, (4.37)

and

∆Gi = J iv
T
i ∆di, (4.38)

with

J i =

ξ1,i 0

0 〈sgn(d2,α)〉ξ2,i

 , ξj,i =
dcj,i

dcj,i − d0j,i

sgn(1− gj,i)
(1 + βi)

η+1
, j = 1, 2. (4.39)

Expression(4.31) can be now written as

∆ωi = U i∆di = U iΛ0Bi

N∑
k=1

Ri,k∆pG,k, (4.40)

where

U i =


Si if βi ≤ 0,

(I −Gi)Si if βi > 0 and βi < βi,(
I −Gi − J idivT

)
Si if βi > 0 and βi = βi.

(4.41)

Linearised nodal vector of residual forces finally becomes

∆gj =
N∑
k=1

Kj,k∆pG,k, (4.42)

where

Kj,k =
n∑
i=1

L∫
0

[
HT

i,jCiH i,k + (1− δin)biΩ
T
i,jU iΩi,k

]
dX1, (4.43)

is nodal tangent stiffness matrix with H i,l = L (DP i,l) and Ωi,l = Λ0BiRi,l.

Equation (3.44) is solved for all nodes at the global level, thus global vector of
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residual forces g = {gj} according to (4.27) and (4.28), global tangent stiffness

matrix K = [Kj,k] according to (4.43) and global vector of increments of the un-

known functions ∆p = {∆pG,k} are assembled using the standard finite-element

assembly procedure [80] to solve the system (3.45). For integration in (4.28) and

(4.43) Gauss quadrature with N − 1 integration points is used for the beam parts

(layers) and Simpson’s rule with N + 1 integration points is used for the inter-

connection parts. In reference [52] it has been shown that, for linear elements,

the application of Gauss quadrature results in a coupling between the degrees of

freedom of different node sets and then in a oscillation of the traction profile, for

high values of the traction gradients, which is not recovered if a Newton-Cotes

integration rule (like Simpson’s rule) is used.

4.4.2 Solution algorithm

The algorithm presented has been implemented within the computer package Wol-

fram Mathematica. Since the governing equations of the problem are non-linear in

terms of the basic unknown functions, the solution of the problem is obtained iter-

atively using the Newton-Raphson solution procedure. First, the input data, con-

sisting of geometrical and material properties of layers and interconnection, mesh

information (number of finite elements, number of nodes per element), loading

and boundary conditions, is entered. The algorithm starts from the undeformed

configuration of the system with an initial load applied and then calculates the

displacements and rotations to define the deformed configuration of the system.

The procedure is repeated iteratively until the equilibrium in the new configura-

tion is obtained and ∆p ≈ 0 and g ≈ 0, depending on the numerical tolerance

chosen. After the Newton-Raphson procedure converges, a new step begins with

a new load increment.

4.4.2.1 Numerical properties of the delamination model

For each element and each interconnection the relative displacements are calcu-

lated and then at each integration point of the interconnection the current stage

of delamination is determined (linear-elastic behaviour, softening, unloading and
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reloading with a reduced stiffness or total damage). In the case when total delam-

ination at all integrations point within an element occurs, the adherence between

the layers is lost not only at that integration point, but along the entire element in

line with the basic properties of weak formulation. The total loss of adherence at

an integration point will lead to very sharp snap-backs in the load-displacement

diagram, which is a behaviour that cannot be captured neither with standard load-

or displacement-control methods in the Newton-Rapshon solution procedure, nor

with the standard arc-length procedure [13]. In the present work the modified

arc-length method proposed by Hellweg and Crisfield [24] is used. The modified

arc-length method is explained in detail in the next section. It has to be also

emphasised that for each load step it is checked whether the current degree of

delamination in the interconnection βα(τ ′) is at the maximum amount reached

so far βα(τ) and, depending on its value, the interconnection tractions ωα (4.17)

and the matrix Uα (4.41) are obtained. Thus, the values βα(τ) are saved at each

load step to be compared with the values βα(τ ′) in the iterations of the next step.

Vector ωα and matrix Uα are then used to calculate the vector of residual forces

and the tangent stiffness matrix. As it can be seen in (4.43), the part of the tan-

gent stiffness matrix which originates from the layers (beam-type formulation) is

independent of the basic unknown functions and thus remains constant through

all load steps and iterations, unlike the layers’ part in the vector of residual forces

in (4.28), which depends on the stress and stress-couple resultants.

4.4.2.2 Modified arc-length method

The main idea of the arc-length method is to use the arc of the curve in the

load-displacement diagram in an nu − 1 dimensional hyperspace (where nu is the

total number of unknown parameters) to solve the non-linear equations using the

Newton-Raphson procedure. According to [13], the equilibrium equation at the

global level can be written in the following form

g(p, λ) = qint(p)− λqext = 0, (4.44)

where g, qint and qext are the global (assembled) vectors of residual, internal and

external forces, respectively, and p = {pG,j}, (j ∈ {1, N}), is the global vector
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of unknown parameters and λ is the load-scaling factor. The vector of external

forces qext contains the initial loads on the system and remains constant during the

entire iterational solution procedure. However, in each iteration external loading

is adjusted using the load-scaling factor λ. Vector g can be expanded in Talyor’s

series up to a linear term about an existing (’old’) configuration as

g(p, λ) = g|pold +K|pold∆p− q
ext∆λ = 0, (4.45)

where pold is the global vector of unknown functions corresponding to the ’old’

(last known, not necessarily equilibrium) configuration. If ∆p is written in the

following form

∆p = ∆pI + ∆λ∆pII , (4.46)

expression (4.45) becomes

K|pold∆pI + ∆λK|poldδpII = −g|pold + ∆λqext, (4.47)

which can be split into

∆pI = −
(
K|pold

)−1
g|pold and ∆pII =

(
K|pold

)−1
qext. (4.48)

The cylindrical arc-length formulation, according to [13], is based on the following

constraint

c = (p− p0) · (p− p0), (4.49)

where p0 is the global vector of unknown functions corresponding to the last

converged equilibrium state. Expanding the expression (4.49) in Taylor’s series

and taking into account (4.46) gives

χ1∆λ
2 + χ2∆λ+ χ3 = 0, (4.50)
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where

χ1 =∆pII ·∆pII ,

χ2 =2∆pII · (p+ ∆pI − p0), (4.51)

χ3 =(p+ ∆pI − p0) · (p+ ∆pI − p0)− c2.

Quadratic equation (4.50) in general gives two solutions and the choice of the

correct solution from the two is an issue which will be explained in detail.

In the first iteration of each load step p = p0 = pold, λ = 0 and g|pold = 0, but

K|pold and qext have non-zero values (like in every other iteration). Then, from

(4.48) it follows that ∆pI = 0 and ∆pII 6= 0, from (4.51) it follows that χ2 = 0,

χ3 = −c2 and from (4.50), finally, it follows that

∆λ = ± c

‖∆pII‖
. (4.52)

Choosing the sign of ∆λ for the next iteration in the first load step is done accord-

ing to the intention of increasing or decreasing the initial load given in qext. In the

following load steps, when either load increase or decrease can occur, the positive

sign in (4.52) is chosen if tangent stiffness matrix is positively definite, otherwise

(in case of at least one negative eigenvalue in the tangent stiffness matrix) the

negative sign is chosen. With the correct sign of ∆λ, new values p = pold + ∆p,

where ∆p = ∆pI + ∆λ∆pII , are obtained for the next iteration.

In the following iterations g|pold ,K|pold , and after that, ∆pI and pII are evaluated

(and in general all have non-zero values), which again leads to equation (4.50),

but this time with χ2 6= 0. This equation, in general, can have real or complex

solutions. In the case of complex solutions the arc-length parameter c has to be

reduced and the load step repeated. A case of a single real solution practically

never occurs due to a numerical round-off in the solution of equations and, in case

of two real solutions, choosing the correct one becomes an issue of fundamental

importance. Choosing the wrong real solution can cause the procedure to double

back on its tracks (i.e. converge to an already known configuration). The criterion

for choosing the proper real solution in the arc-length method makes the main

difference between the standard and the modified arc-length method. In both
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methods, two solutions for the vector of unknown functions are calculated as

p(1) =p0 + ∆pI + ∆λ1∆pII ,

p(2) =p0 + ∆pI + ∆λ2∆pII , (4.53)

where ∆λ1 and ∆λ2 are the first and the second solution of equation (4.50), respec-

tively. The standard arc-length method uses the incremental vector of displace-

ments between two last equilibrium configurations, pµ−pµ−1, and the incremental

vectors of displacement between the two new configurations and the last equilib-

rium configuration, p(1)−pµ, and, p(2)−pµ, where µ denotes the last equilibrium

configuration. It is assumed that the correct solution ∆λi is the one which gives

the smallest scalar product ϕi = (p(i) − pµ) · (pµ − pµ−1), for i = 1, 2. This

may be interpreted as finding the solution with a minimum ’angle’ ϕi between

(p(i) − pµ) and (pµ − pµ−1) in the solution hyper-space [13]. For an imaginary

one-degree-of-freedom problem the idea is illustrated in Fig. 4.5.

Figure 4.5: Difference between the standard and the modified arc-length
method

In the vicinity of very sharp snap-backs, the method of selecting the solution ac-

cording to the minimum angle criterion often fails due to the steepness of the

load-displacement curve (see Fig. 4.5). The modified arc-length method, on the

other hand, takes a different strategy. For both solutions (4.53) the global vec-

tor of residual forces (and the global tangent stiffness matrix) are calculated. If

the Euclidian norm of the first global vector of residual forces is less than the
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required tolerance, the first solution has converged and the next step initiates. If

the required tolerance is not achieved, the increments of the vector of unknown

functions, the vector of residual forces and the tangent stiffness matrix for the

first solution are saved. The maximum degrees of delamination at the integration

points βα(τ) in all elements and all interconnections are saved as well. Then the

second solution from (4.53) is used to calculate the vector of residual forces (and

the tangent stiffness matrix) again. If the Euclidian norm of the second global

vector of residual forces is less than the required tolerance, the second solution

is taken and the next step initiates. In case that the norm does not satisfy this

condition, the first and the second norm of the global vector of residual forces

are compared and the solution with the lower residual norm is taken. Fig. 4.5

illustrates the reasoning behind this idea.

4.4.2.3 Fixed vs. adaptive arc-length

It is also possible do begin each load step with the same arc-length parameter c

or to modify it depending on a desired criterion, like, for instance [2],

ci+1 =

√
Nd
it

Np
it

ci, (4.54)

where Np
it is the number of iterations needed for convergence at increment i and

Nd
it is a user-defined ’desired’ number of iterations. This is a very effective tool

to reduce the computational time because large load steps are thus taken always

as the convergence is good. On the other hand, setting non-realistically small Nd
it

can lead to a continuous reduction of c and the computational time that tends to

infinity. Thus, Nd
it has to be carefully chosen depending on the problem analysed.

However, if the intention is to plot an accurate load-displacement diagram, the best

option is to have a well chosen constant arc-length c, rather than the adaptive

arc-length which may skip many interesting highly-curved regions in the load-

displacement diagram.
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4.5 Numerical examples

In this section the presented model is tested for mode I, mode II and mixed-mode

delamination.

4.5.1 Mode I delamination example

This example is the standard test for mode I delamination known as the Double

cantilever beam (DCB) test. The specimen [2] is shown in Fig. 4.6 with the

corresponding geometrical properties (the width of the beam is 20 mm), boundary

conditions and the loading which causes the notch to open vertically and then

propagate to the left-hand side of the beam as the interconnection delaminates in

pure mode I.

Figure 4.6: Test specimen for the DCB test

In the original example [2], orthotropic material data is given, with two Young’s

moduli, one shear modulus and two Poisson’s coefficients, which for the beam

constitutive model (3.21) is reduced only to Ei = 135.3 GPa, Gi = 5.2 GPa, (the

beam is modelled as a two-layer beam where i = 1, 2). For the interconnection

(index α is omitted since there is only one interconnection) Gcj = 0.28 N/mm,

d0j = 10−7 mm and t0j = 57 MPa, j = 1, 2. From these values the penalty

stiffness parameters are computed according to (4.18) as Sj = ω0j/d0j = 5.7 · 108

N/mm3, while the relative displacement at which complete delamination occurs is

according to (4.13) dcj = 2Gcj/t0j = 9.825·10−3 mm. The results of the analysis for

various FE meshes are presented in Fig. 4.7 where the relation between the applied

force and the vertical displacement at the free end has been shown. The beam is

modelled as a two-layered beam which is connected with the interconnection only

between the clamped end and the notch. The beam and the interconnection are
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divided in finite elements of equal length. Thus, for 100 beam finite elements 70

interconnection finite elements are used and this number has been doubled three

times until the finest mesh of 800 beam finite elements and 560 interconnection

finite elements has been obtained. The total number of degrees of freedom is 606

for the 100 element mesh, 1206 for the 200 element mesh, 2406 for the 200 elements

mesh and 4806 for the 800 element mesh. On the other hand, in [2] a rectangular

mesh of 4× 400 eight-node plane strain (Q8) elements and 280 six-node interface

elements (INT6) has been adopted, resulting with 11218 degrees of freedom. Using

significantly less degrees of freedom the beam model gives satisfactory accuracy in

comparison with plane strain finite element model and analytical solution (see Fig.

4.7). Derivation of the analytical closed-form solution for mode I delamination is

presented in Appendix B. It can be easily shown that the maximum value of the

force for the analytical solution is 68.87 N (intersection between the first linear

branch and the curved branch), while the minimum value is 20.66 N (intersection

between the curved branch and the second linear branch).

Figure 4.7: DCB test results for various FE meshes
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The results are compared with the results from [2] and [36], where plane stress 2D

finite elements were used, and show very good agreement. The liner-elastic part of

behaviour of the system can be clearly observed, although, before the peak of the

diagram, a slight softening (which is hard to distinguish graphically) occurs due to

the start of the damage process in the integration points near the notch. For this

reason the multi-layer beam solution in this part of the diagram shows a slightly

softer behaviour in comparison with the analytical solution (see Fig. 4.7). The

peak is reached when the interconnection at the first integration point (the one

nearest to the notch) is completely lost (total damage). As the crack propagates

from the notch to the clamped end, a decrease in overall stiffness of the system can

be observed, which after a specific point (F ≈ 22 N and v(L) ≈ 9 mm), stabilises

meaning that the interconnection is almost completely damaged and the stiffness

of the system approximately equals the stiffness of the beam layers. It has to

be emphasised that at the end of the presented test, total damage still did not

occur at all integration points. It can be also seen that, depending on the meshing,

oscillations around the exact solution during the delamination process occur. This

phenomenon is mentioned earlier and is caused by the discretisation in numerical

integration which is obviously mesh dependent. A closer look at the peak of the

diagram is shown in Fig. 4.8 where it can be observed that for all meshes a certain

amount of oscillations around the exact solution is obtained, but the phenomenon

is reduced by increasing the number of integration points through an increased

number of finite elements.

4.5.2 Mode II delamination example

The example presented next was proposed by Mi et al. [38] and its geometrical

properties are shown in Fig. 4.9, with width of the beam bi = 1 mm (i = 1, 2, beam

is again modelled as a two-layer beam) and a variable notch length a0. Material

properties of the beam are Ei = 135300 N/mm2, Gi = 54120 N/mm2, while for the

interconnection Gcj = 4.0 N/mm, t0j = 57 N/mm2 and d0j = 10−7 mm, j = 1, 2.

In the same manner as in the previous numerical example, dcj = 0.14 mm and

Sj = 5.7 · 108 N/mm3 are obtained.
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Figure 4.8: Mesh dependence on the DCB test results for various FE meshes

Figure 4.9: Test specimen for the mode II delamination test

The force F causes the two layers of the beam to slip against each other causing

the pure mode II delamination at the interconnection. Obviously, penetration

between the layers must be suppressed which is by default done by the mixed-mode

interconnection finite elements, while the notch is modelled using interconnection

elements with zero stiffness in mode II and a high penalty stiffness S2 in mode I .

The results presented in Fig. 4.10 show the load - midspan deflection relationship.

Mesh dependence in this example is less pronounced than in the mode I example,

and it can be observed that even for rather coarse meshes the results are very

close to the converged ones. Similar behaviour as in the previous example can be

noted in the linear elastic range, with a decrease in overall stiffness after the peak
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load has been reached and subsequent hardening eventually leading to a linear-

elastic behaviour with completely damaged interconnection. The results presented

in this work show a very good accordance with the results presented in [38] which

were obtained using the 2D plane stress finite elements for the bulk material. It

can be also noticed that the results obtained with the multi-layer beam model,

compared with the numerical results presented in [38], show better agreement

(almost coincide) with the analytical results for the delaminations (derivation of

the analytical solution is presented in Appendix B). Since in [38] the mesh data

for the FEA solution has not been provided, the comparison between the total

number of degrees of freedom for the beam and the plane finite element model is

not presented.

Figure 4.10: Load - midspan deflection diagram for the mode II delamination
test

4.5.3 Single mixed-mode delamination example

This example, proposed by Mi et al. [38], too, is very similar to the mode II

delamination example and is shown in Fig. 4.11. Geometrical properties, as well

as the material properties for the interconnection, are the same as in the mode II
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delamination example, except that the results are given only for a0 = 30 mm. The

material properties for the bulk material in [38] are given as for the orthotropic

material, with two Young’s moduli, one shear modulus and two Poisson’s coeffi-

cients, while in the present model only the Young’s modulus in the longitudinal

direction and the shear modulus in the corresponding transverse direction are used

as Ei = 135300 N/m2 and Gi = 5200 N/mm2, i = 1, 2. In this example two forces

F1 = 0.4535F2 and F2 are applied to the system. The force F2, as in the previous

example, causes a pure mode II delamination at the interconnection, while the

force F1 causes a pure mode I delamination. When both forces are acting on the

system, the mixed-mode delamination at the interconnection is caused.

Figure 4.11: Test specimen for the mixed-mode delamination test

The results of the test are plotted in Fig. 4.12, showing the relationship between

the load F1 and the vertical displacement at the left-hand side of the beam. Similar

behaviour as in the two previous examples can be observed, considering the shape

of the diagram and the meshing influence on the results. The results from the

multi-layer beam model agree very well with the numerical results from [38], where

2D plane-stress finite elements and two criteria (linear η = 2 and eliptical η = 4) for

the mixed-mode delamination parameter (4.14) were used. In the presented multi-

layer beam model only linear criterion with η = 2 has been used, and considering

that the numerical results in [38] are obtained for an orthotropic material model,

the agreement of the results is more than satisfactory. The analytical results for

delamination [38] also show excellent agreement with the numerical results. It

has to be added, however, that in contrast to the earlier single-mode analytical

solutions, there exist different interpretations of the mixed-mode analytical model,

see e.g. [65].
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Figure 4.12: Load - vertical displacement at the left-hand side diagram for the
mixed-mode delamination test

4.5.4 Double mixed-mode delamination example

Based on an experimental investigation of a multi-layered specimen manufactured

from HTA913 carbon-epoxy material, numerical models are presented by Robinson

et al. [49] and later by Alfano and Crisfield [2]. The specimen is supported only

at the bottom of the left-hand side with a vertical force F acting at the top of

the left-hand side causing a crack to propagate first as a continuation of the upper

initial crack only, but later along both initial cracks simultaneously (see Fig. 4.13).

The HTA913 specimen is made of 18 layers of equal thickness, where the initial

cracks are located between the 10th and the 11th layer and between the 12th and

the 13th layer (counted from the bottom). Since it is assumed that all the other

interlayer connections are rigid, a multi-layer beam model is specified as having

three layers and two interconnections. The geometry of the specimen is shown in

Fig. 4.13, where a = 20 mm, H = 3.18 mm and width B = 20 mm.

Orthotropic material properties for HTA913 given in [49] are adapted for the

beam model as Ei = 115.0 GPa, Gi = 4.5 GPa, (i = 1, 2, 3), whereas for the
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Figure 4.13: Specimen for the double mixed-mode delamination

interconnection, according to [2], material properties Gc1,α = 0.80 N/mm, Gc2,α =

0.33 N/mm, ω01,α = 7.0 MPa, ω02,α = 3.3 MPa and d0j,α/dcj,α = 10−6, where α =

1, 2 and j = 1, 2, are used. It can be further derived that dc1,α = 2Gc1,α/ω01,α =

0.23 mm, dc2,α = 2Gc2,α/ω02,α = 0.2 mm, d01,α = 2.3 · 10−7 mm, d02,α = 2 · 10−7

mm, S1,α = t01,α/ω01,α = 3.06 · 107 N/mm3 and S2,α = t02,α/ω02,α = 1.65 · 107

N/mm3.

In Fig. 4.14 a comparison between the multi-layer beam model and the model

proposed by Alfano and Crisfield [2] is shown. The vertical displacement of the

top layer at the left-hand side of the beam is plotted against the applied load F .

Alfano and Crisfield have used a 3 × 360 QM4 + 680 INT4 mesh with a total

of 4322 degrees of freedom and the tangent predictor for the solution (see [2] for

more details). On the other hand, for the multi-layer beam model, two meshes

with two-node beam finite elements and INT4 interface elements are adopted. 3-

point Newton-Cotes integration is used for the INT4 interface elements. The first

mesh with 180 finite elements uses 1629 degrees of freedom, while the second mesh

with 360 finite elements uses 3249 degrees of freedom. It can be noted that the

results obtained using the multi-layer beam model show excellent agreement with

the converged solution using 2D othotropic plane-strain finite elements and use

significantly less degrees of freedom.

The results shown in Fig. 4.14 are obtained using the model where reference axes of

all three layer coincide with their centroidal axes (ai = hi/2, i = 1, 2, 3). However,

changing the position of reference axes of the layers has an influence on the results,

which is shown in Fig. 4.15. The first position is as mentioned, while in the second

position the reference axis of the middle layer is positioned in the middle of the

beam (i.e. on top of this layer, a2 = h2) and the two remaining reference axes are
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Figure 4.14: Comparison of the results for the double mixed-mode delamina-
tion example

positioned symmetrically with respect to the middle axis with a1 = a3 = H/4. The

third position is the same as the second, only that the reference axis of the second

layer now coincides with the reference axis of the third layer and a2 = (h2−h1)/2.

Other positions, such as a position where all reference axes lay on the centroidal

line, cause numerical problems and no acceptable solutions can be obtained. At

this point of investigation we only recommend to keep the reference axes of the

layers always in line with their centroidal axes in order to obtain the desired results.

However, more investigation on the influence of the reference axes position on the

results is planned in order to propose an optimal position of the layers’ reference

axes.

In the work which follows Reference [2], Alfano and Crisfield, have examined the

influence of variation of some interface material parameters, while keeping the

energy release rate constant, on the results of the same double mixed-mode de-

lamination problem (see [3] for details). Three sets of material properties used in

this comparison are presented in Table 4.1. It can be observed that all the three

sets have identical energy release rates Gcj,α and penalty stiffness parameters Sj,α,

where j = 1, 2, but other quantities relevant for the interconnection significantly

86



Figure 4.15: Influence of the position of the layers’ reference axes on the results

differ. This means that the area under the relative displacement-contact traction

diagram in Fig. 4.3, as well as the slope of the linear-elastic branch remains the

same in all three cases, but the peak contact traction ω0j,α and maximum relative

displacement dcj,α are different.

Table 4.1: Three sets of material properties for the interconnection for the
double mixed-mode delamination example

Case Gc1,α Gc1,α d0j,α/dcj,α ω01,α ω02,α d0j,α dcj,α S1,α S2,α

[N/mm] [N/mm] [MPa] [MPa] [mm] [mm] [N/mm3] [N/mm3]
A 0.8 0.33 5·10−5 8.0 3.3 1·10−5 0.2 8·105 3.3·105

B 0.8 0.33 1.25·10−3 40.0 16.5 5·10−5 0.04 8·105 3.3·105

C 0.8 0.33 5·10−3 80.0 33.0 1·10−4 0.02 8·105 3.3·105

In this example, two different non-uniform finite element meshes are used. The

horizontal domain is divided in five zones. The first zone, according to Fig. 4.13, is

near the left-hand side of the beam with the initial crack along the upper interface

(α = 2), while the second zone covers the initially uncracked part of the beam

between the two initial cracks, and the third zone covers the region of the second

initial crack, which has been placed along the lower interface (α = 1). The initially

undamaged right-hand part of the beam is divided in two zones, zone 4, where

delamination is expected, and zone 5, where no delamination is expected. In

contrast to the previous example (see Fig. 4.13), this part of the beam in this
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example is 70 mm long. However, this difference does not influence the results as

long as cracks remain sufficiently distant from the right-hand end of the specimen.

The lengths of the meshing zones, along with the number of finite elements for

both meshes are given in Table 4.2.

Table 4.2: Two finite element meshes for the double mixed-mode delamination
example with different material properties for the interconnection

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Total
Length [mm] 40 20 20 50 20 150
Initial crack α = 2 none α = 1 none none

Mesh 1 / No. of FE 2 20 20 50 5 97
Mesh 2 / No. of FE 4 40 40 100 5 189

In this example, in contrast to the one previously presented, interface elements

with no contact tractions, except in compression in mode I, are used at the notches.

This feature gives more realistic behaviour of the model (penetration between

layers at the notches is almost completely prevented) so the second peak in Fig.

4.14 (v3(0) ≈ 9 mm and F ≈ 35 N), which is obviously a non-physical artefact

of the model, disappears. Compression tractions in this example can occur only

at the bottom notch in which they grow as the upper crack approaches it, but

as soon as the upper crack reaches the horizontal position of the start of the

bottom notch, delamination and crack propagation in the bottom notch starts,

too. After that, the upper crack propagation is slowed down, while the bottom

crack propagates more rapidly. In [3], no interface elements are inserted between

the middle and the bottom layer in meshing zones 1 and 2, i.e. the left-hand side

of the bottom interconnection is assumed to be absolutely rigid, which is justified,

since the results show that the bottom crack propagates only to the right. In the

present work, interface elements with 100 times higher values of penalty stiffness

parameters are used at the left-hand side of the bottom interface.

In Fig. 4.16, a comparison between the multi-layer beam model and the model

proposed by Alfano and Crisfield [3], which uses 2D plane-strain finite elements

with interface elements, is shown. As in [3], mesh 1 is used for case A, while mesh 2

is used for cases B and C according to Table 4.2. Three-node beam finite elements

and six-node interface elements (INT6) are used in the multi-layer beam model. 3-

point Newton-Cotes integration is used for the interface elements. Using 97 QPSN8

finite elements per layer with INT6 interface elements at the interconnections, as
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did Alfano and Crisfield [3], results in 2938 degrees of freedom for case A, while

using 189 QPSN8 finite elements per layer with INT6 interface elements at the

interconnections results in 5510 degrees of freedom for cases B and C. On the

other hand, using the presented multi-layer beam model according to Table 4.2

gives 1755 degrees of freedom for mesh 1 (case A) and 3411 degrees of freedom for

mesh 2 (cases B and C). Even though the total number of degrees of freedom is

considerably reduced, the multi-layer beam model still gives results that, for the

most critical part of the load-displacement diagram, show an excellent agreement

with the results presented by Alfano and Crisfield [3] (see Fig. 4.16). It can be

also noted that the cases B and C show better agreement with the experimental

results [49].

Oscillations, typical for finite element analysis of delamination problems, however,

can still be noted in the diagram, especially in the final softening branch. Using

mesh 1 for the case A, a very small amount of oscillations occurs, while using

a finer mesh 2 for the cases B and especially C, oscillations become more pro-

nounced. Thus it can be concluded that the influence of material parameters of

the interconnection has even bigger influence on the oscillations of the results than

the meshing itself. Compared to the plane-strain finite element formulation [3],

the present model shows larger oscillations which can be reduced using numerical

integration of higher order (more integration points).

In Fig. 4.17 a comparison of the results obtained using different order of Newton-

Cotes numerical integration is shown for the last part of the diagram. It can be

noted that using 4 integration points instead of 3, the oscillations reduce consider-

ably and the results are much closer to those proposed by Alfano and Crisfield [3].

On the other hand, further increase in number of integration points does not lead

to any significant improvement of the results. It has to be emphasized that results

in Fig. 4.17 correspond to the FE mesh with 20 elements (instead of 40) in the

second zone according to Table 4.2, which however does not have any significant

influence in this part of diagram.
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Figure 4.16: Results for different cases of material properties of the intercon-
nection: a) plane-strain finite element model from literature, and b) multi-layer

beam model

4.6 Conclusions

In the present work a multi-layer beam with interconnection allowing for delam-

ination between layers has been presented. The bulk material is modelled using
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Figure 4.17: Comparison of the results for different order of numerical inte-
gration

beam finite elements, while the cohesive-zone model incorporated into the inter-

face elements proposed by Alfano and Crisfield [2] is used for the interconnection.

Modelling the bulk material structure as beams, in comparison with commonly

used 2D plane-stress finite elements, reduces the total number of unknown func-

tions, which is one of the biggest benefits of the presented model. The results of

the numerical examples presented in the present work agree very well with the

results from the literature (which use 2D plane-stress finite elements for the bulk

material).
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5 CONCLUSIONS AND FUTURE WORK

In this thesis several aspects of modelling multi-layer plane structures using the

beam theory have been presented. They can be systematised in three basic parts:

1. analytical solution of geometrically and materially linear problem of multi-

layer beam with compliant interconnections

2. finite element formulation for geometrically exact multi-layer beam with a

rigid interlayer connection

3. finite element formulation for geometrically linear multi-layer beam with

non-linear material law at the interconnection

In the first part, the differential equations for different conditions at the intercon-

nection have been derived and the solution procedure has been proposed. Influence

of different interlayer conditions on the mechanical behaviour of layered beams has

been studied on a couple of numerical examples. It has been shown that by vary-

ing interconnection stiffnesses in tangential and normal direction, the mechanical

behaviour of composite beam is always between two limits states: a composite

beam with completely rigid connection (which is often used in engineering prac-

tice) and a composite beam with no connection. One of the shortcomings of the

models which allow for the interlayer uplift is the lack of ability to prevent the

penetration between the adjacent layers in case of compressive normal tractions

at the interconnection. However, the presented analytical solution is very useful

for the analysis of layered composite structures where small deformations and ro-

tations occur, and material behaviour is in the linear-elastic range, as is often the

case in applications in civil engineering.

The finite element formulation from the second part is particularly appropriate

for modelling homogeneous beams using the multi-layer discretization, perhaps

more than for modelling the composite beams where usually a certain amount of
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interlayer slip or/and uplift occurs. However, if the stiffness of the interconnection

is considerably greater than the stiffness of the bulk material and the displace-

ments and rotations are not small, this model can be successfully utilised. In

the presented numerical examples, which include warping of the cross-section, it

has been shown that in comparison with the models using 2D finite elements, for

comparable meshes, the multi-layer beam model proposed uses significantly less

degrees of freedom and gives results with satisfactory accuracy. One of the main

disadvantages of the multi-layer beam model in this comparison is the transverse

incompressibility, which is included in the basic beam theory. Transverse deforma-

bility could be eventually introduced by using some higher order beam theories or

by inserting deformable interconnections of finite thickness between the layers.

In the third part, a mixed-mode delamination problem has been examined using

beam finite elements for the bulk material, which, to the best of author’s knowl-

edge, has not been presented yet in the literature. A very detailed description of

the solution procedure (modified arc-length method), which is necessary to obtain

convergence is such problems, is presented. In comparison with commonly used

2D finite elements, the beam finite elements for the bulk material give good ac-

curacy of the results with less degrees of freedom. Although in the present work

only examples with a single interconnection between two layers have been shown,

the presented model can be used in case of multi-layer beams with multiple inter-

connections. It is also possible to extend this model to a geometrically non-linear

analysis. The main issue which in this case remains is how to define the matrix

Λα from (4.12) in an appropriate manner. Such a model would allow to analyse

problems with large deformations and rotations, such as peel test. The model

may be easily extended to a uniaxial materially non-linear constitutive law for the

bulk material. Also, further analyses of the influence of the layers’ reference axes

position on the results are needed.
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Appendix A

Linearization of the nodal vector of residual forces

for the geometrically non-linear multi-layer beam

with a rigid interconnection

The linearisation of the nodal vector of residual forces is performed as

∆gj =
n∑
i=1

{ L∫
0

ΨT
j

∆BT
i

DT
i

nini,3

−
f iwi


+BT

i

∆DT
i

nini,3

+

+DT
i ∆LT

i Ci

γiκi
+DT

i L
T
i Ci

∆γi

∆κi


)]

dX1−

−

δj,1∆BT
i,0

F i,0

Wi,0

+ δj,N∆BT
i,L

F i,L

Wi,L


}, (A.1)

where nini,3

 = LT
i Ci

γiκi
 , (A.2)

and the interpolation functions in Ψj are assumed to be configuration-indepen-

dent. The linearized matrices and vectors are

∆Bi =

0I 0 . . . 0 −∆θζdi,ζtζ,2 . . . −∆θξdi,ξtξ,2 0 . . . 0

0T 0 . . . 0 0 . . . 0 0 . . . 0

 , (A.3)

∆Di =

0I −t̂3∆u′i
0T 0

 , (A.4)

∆LT
i =

∆θit̂3 0

0T 0

LT
i , (A.5)

∆γi

∆κi

 = LiDi

∆ui

∆θi

 = LiDiBi∆pf , (A.6)

97



where ∆pT
f = 〈∆uT ∆θ1 . . . ∆θn〉. Parts of expression (A.1) are further

written as

∆BT
i D

T
i

nini,3

 = (J i,1 + J i,2)∆pf , (A.7)

∆DT
i

nini,3

 = H iBi∆pf , (A.8)

∆LT
i Ci

γiκi
 = P iBi∆pf , (A.9)

∆Bi

f iwi
 = J i,f∆pf , (A.10)

∆Bi,χ

F i,χ

Wi,χ

 = J i,χ∆pf , χ = 0, L (A.11)

where

H i =

 0I 0

−nT
i t̂3

d
dX1

0

 , (A.12)

P i =

0I t̂3ni

0T 0

 , (A.13)

J i,η =



0I 0 . . . 0 0 . . . 0 0 . . . 0

0T 0 . . . 0 0 . . . 0 0 . . . 0
...

... . . . ...
...

...
...

...

0T 0 . . . 0 0 . . . 0 0 . . . 0

0T 0 . . . 0 βηi,ζ . . . 0 0 . . . 0
...

...
...

... . . . ...
...

...

0T 0 . . . 0 0 . . . βηi,ξ 0 . . . 0

0T 0 . . . 0 0 . . . 0 0 . . . 0
...

...
...

...
...

... . . . ...

0T 0 . . . 0 0 . . . 0 0 . . . 0



, η ∈ {1, 2, f, 0, L}, (A.14)
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and for k ∈ 〈ζ, . . . , ξ〉

β1
i,k = di,kn

T
i

(
θ′ktk,1 − tk,2

d

dX1

)
, (A.15)

β2
i,k = −di,knT

i tk,2
d

dX1

, (A.16)

βfi,k = −di,kfT
i tk,2, (A.17)

βχi,k = −di,kF T
i,χtk,2, (χ = 0, L). (A.18)

The derivation of matrices J i,1 and J i,2 is explained in detail. First, using expres-

sions (A.3) and (3.33) we can obatin

∆BT
i D

T
i =

0I 0 . . . 0 λi,ζ . . . λi,ξ 0 . . . 0

0T 0 . . . 0 0 . . . 0 0 . . . 0

T

= Y T
i (A.19)

where for k ∈ 〈ζ . . . ξ〉

λi,k = ∆θkdi,k

(
θ′ktk,1 − tk,2

d

dX1

)
−∆θ′kdi,ktk,2. (A.20)

Matrix Y i is then split into two parts, first one, Y 1,i, containing the terms with

∆θj, and the second one, Y 2,i, containing the term with ∆θ′j. Thus, expession

(A.7) can be written as

∆BT
i D

T
i

nini,3

 = (Y i,1 + Y i,2)
T

nini,3

 = (J i,1 + J i,2) ∆pf (A.21)

from where it can be clearly seen that the coefficients β1
i,k and β2

i,k from matrices

J i,1 and J i,2 (see expressions (A.12), (A.15) and (A.16)) are derived from the first

and the second part of λi,k (A.20). The differential operator in (A.16) originates

from ∆θ′k in expression (A.20). The coefficients βfi,k and βχi,k are computed anal-

ogously. The differential operator in matrix J1,i is operating on the matrix Ψj,

while in matrices J2,i and H i it is operating on the vector ∆pf . Matrices J1,0

and J1,L are evaluated for X1 = 0 and X1 = L, respectively. By substituting
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expressions (A.12)-(A.14) into (A.1) we obtain

∆gj =
n∑
i=1

{ L∫
0

ΨT
j

[
(J i,1 + J i,2)− J i,f +BT

i

(
H iBi +DT

i P iBi+

+DT
i L

T
i CiLiDiBi

)]
∆pfdX1 − (δj,1J i,0 + δj,NJ i,L) ∆pf

}
. (A.22)

We further interpolate the linear increments ∆pf using the same interpolation as

for the test functions, i.e.

∆pf =



∆u(X1)

∆θ1(X1)
...

∆θn(X1)


=

N∑
k=1

Ψk(X1)



∆uk

∆θ1,k

...

∆θn,k


=

N∑
k=1

Ψk(X1)∆pk, (A.23)

to obtain

∆gj =
N∑
k=1

Kj,k∆pk, (A.24)

where

Kj,k =
n∑
i=1

( L∫
0

{(
ΨT
j J i,1

)
Ψk + ΨT

j

[
(J i,2Ψk)− Jf,iΨk +BT

i (H iBiΨk)
]

+

+ (DiBiΨj)
T
[
P iBiΨk +LT

i CiLi (DiBiΨk)
]}

dX1− (A.25)

− δj,1δk,1J i,0 − δj,Nδk,NJ i,L

)
,

are (2 + n)× (2 + n) nodal stiffness matrices which are assembled into an element

tangent stiffness matrix of dimensions N(2 + n) × N(2 + n) as K = [Kj,k]. In

expression (A.25) some matrices are grouped in parentheses to emphasize and

separate the action of the differential operators. For integration in (A.25) we use

Ψk = µkI3×3, (A.26)

where µk is the Lagrangian polynomial of order N − 1 with µk(X1,l) = δkl and

I3×3 is a 3 × 3 identity matrix. Also, we perform the Gaussian quadrature with

N − 1 integration points in order to avoid shear-locking [61].
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Appendix B

Closed-form solutions for mode I and mode II de-

lamination

B.1 Mode I delamination

Closed-form solution for mode I delamination is derived for a double cantilever

beam with initial crack according to Fig. 4.6. The deflection of the upper layer at

the free end, v2(L), which is due to the symmetry of the system opposite to the

deflection of the bottom layer, v1(L), before the interconnection is damaged and

the initial crack propagates to the left reads

v2(L) = −v1(L) =
Fa3

0

3EI
, (B.1)

where F is the force applied to each layer at the free end, a0 is the length of the

initial crack and EI is the bending stiffness of each layer. This solution corresponds

with the linear branch of the analytical solution shown in Fig. 4.7.

When the damage of the interconnection starts and the crack propagates to the left

(a > a0), strain energy due to bending of each layer at the crack tip is released.

The crack will propagate when the strain energy rate per a unit of crack area

reaches the critical energy release for mode I delamination. The strain energy rate

at a crack tip reads

dΦ =
M2(a)da

2EI
=
F 2a2da

EI
. (B.2)

The critical energy release for mode I delamination can be thus expressed as

GIc =
dΦ

bda
=
F 2a2

bEI
, (B.3)
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where b is the width of the beam. The deflection of the free end of the upper layer

with the crack tip of the ongoing delamination can be then expressed as

v2(L) =
Fa3

3EI
=

F

3EI

(
GIcbEI

F 2

) 3
2

, (B.4)

where again v1(L) = −v2(L). This solution corresponds to the curved branch of

the analytical solution shown in Fig. 4.7. When the interconnection is completely

damaged each layer acts individually as a cantilever beam and the tip displacement

reads

v2(L) = −v1(L) =
FL3

3EI
, (B.5)

which is represented by the second linear branch in the diagram in Fig. 4.7.

B.2 Mode II delamination

Closed-form solution for the mode II delamination is derived for the simply sup-

ported beam with a concentrated force at the midspan and an initial crack at the

left-hand side as shown in Fig. 4.9. Vertical deflection at the midspan for such a

beam before the delamination process has started reads

v(L) = v1(L) = v2(L) =
F

96EI
(2L3 + 3a3

0), (B.6)

where L is half of the length of the beam according to Fig. 4.9, a0 is the initial

crack length and EI is the bending stiffness of one layer of the cracked beam.

In case of ongoing delamination up to the point where the crack reaches the

midspan (a < L), the strain energy rate equals the difference between the strain

energy rates of the beam with a damaged cross-section (bending stiffness 2EI) and

the beam with an undamaged cross-section (bending stiffness 8EI), which can be

written as

dΦ =
M2(a)da

2

(
1

2EI
− 1

8EI

)
=

3

16

M2(a)da

EI
=

3

16

(
F
2
a
)2

da

EI
. (B.7)
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When this rate per unit of crack area reaches the critical energy release for mode

II delamination the crack will propagate. In this case, therefore,

GIIc =
dΦ

bda
=

3

64

F 2a2

bEI
. (B.8)

From (B.7) and (B.8), the midspan deflection for ongoing delamination and a < L

can be then obtained as

v(L) =
F

96EI
(2L3 + 3a3) =

F

96EI

[
2L3 +

(64GIIcbEI)
3
2

√
3F 3

]
. (B.9)

This solution is shown as analytical delamination (a < L) in Fig. 4.10.

When a > L the midspan deflection of the beam reads

v(L) =
F

24EI

[
2L3 − 6

(
L− a

2

)3
]
. (B.10)

Since the moment at the crack tip now reads

M(a) =
F

2
a− F (a− L) = F

(
L− a

2

)
, (B.11)

the strain energy rate as

dΦ =
3

16

M2(a)da

EI
=

3

16

F 2
(
L− a

2

)2
da

EI
, (B.12)

and the critical energy release for mode II delamination is

GIIc =
dΦ

bda
=

3

16

F 2
(
L− a

2

)2
bEI

. (B.13)

Thus, the midspan deflection for ongoing delamination while a > L is obtained by

substituting a from (B.13) in (B.10) eventually giving

v(L) =
F

24EI

[
2L3 − (64GIIcbEI)

3
2

4
√

3F 3

]
, (B.14)

This solution is shown as analytical delamination (a > L) in Fig. 4.10.
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When the beam is completely damaged (a = 2L) the midspan deflection reads

v(L) =
FL3

12EI
(B.15)
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