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Abstract

In this thesis different aspects of behaviour of layered structures are analysed and
numerically modelled using beam finite elements. Three models for the layered
beams are presented. All the models are expressed in a general form for an arbi-
trary number of layers and each layer can have individual geometrical and material
properties, boundary conditions and applied loading. The first of them is an ana-
lytical model for a multi-layer beam with compliant interconnections. Kinematic
and constitutive equations are linear and various interlayer contact conditions are
considered (no contact, rigid interconnection, interlayer slip and/or interlayer up-
lift). The second model is a finite element formulation for geometrically exact
multi-layer beams with a rigid interconnection. This model proves to be very
efficient for modelling homogeneous structures via multi-layer beams, especially
for thick beam-like structures, where cross-sectional warping is more pronounced.
The third model deals with mixed-mode delamination in multi-layer beams. A
damage-type bi-linear constitutive law for the interconnection is implemented for
an interface finite element sandwiched between two layers. Numerical examples are
presented for all models and the results of the tests are compared to representative

results from the literature.

Keywords: layered beams, analytical solution, non-linear analysis, mixed-mode

delamination.



Sazetak

U ovoj disertaciji obradeni su razlic¢iti aspekti ponasanja slojevitih nosaca modeli-
ranih grednim kona¢nim elementima. Predstavljena su tri modela za proracun slo-
jevitih greda. Svi predstavljeni modeli zapisani su u opéenitom obliku za proizvo-
ljan broj slojeva, gdje svaki sloj moze imati zasebne geometrijske i materijalne

karakteristike te optereé¢enje i rubne uvjete.

Prvi je analiticki model za viSeslojnu gredu s popustljivim kontaktom medu slo-
jevima. Kinematicke i konstitutivne jednadzbe su linearne te su u obzir uzeti
razli¢iti uvjeti na kontaktu. Tako veza medu slojevima moze biti apsolutno kruta,
omogucavati nezavisno rotiranje jednog sloja u odnosu na drugi, omogucavati kli-
zanje i razmicanje medu slojevima ili pak slojevi mogu biti potpuno nepovezani. U
numerickim primjerima istrazen je utjecaj materijalnih i geometrijskih parametara

osnovnog materijala i kontakta na ponaSanje slojevitih greda.

Drugi model predstavlja formulaciju konacnog elementa za geometrijski egzaktnu
viSeslojnu gredu s krutom vezom medu slojevima. Ovaj model se pokazao vrlo
efikasnim za modeliranje homogenih nosaca koristeci viseslojne grede, posebno u
slucaju visokih greda kod kojih je naglaseno vitoperenje poprec¢nog presjeka. U
usporedbi s ravninskim kona¢nim elementima koji se ¢esto koriste za diskretizaciju
ravninskih nosaca, model viseslojne grede daje usporedivo dobre rezultate koristec¢i

znatno manji broj stupnjeva slobode.

Tre¢i model uvodi raslojavanje u viSeslojne grede. Kontaktni kona¢ni element s
ugradenim bilinearnim konstitutivnim zakonom koji uzima u obzir oStecenje umet-
nut je izmedu grednih konac¢nih elemenata ¢ime je omogué¢eno modeliranje prob-
lema s odvojenim oblicima (modovima) raslojavanja I i II te mjeSovitim oblikom
raslojavanja. Numericki primjeri pokazuju kako ovakav gredni model, u usporedbi
s modelima koji koriste ravninske konacne elemente, daje rezultate usporedive

tocnosti uz manji broj stupnjeva slobode.

Kljuc¢ne rijeci: slojevite grede, analiticko rjesenje, nelinearna analiza, mjesovito

raslojavanje.
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1 INTRODUCTION

Layered structures appear in many engineering applications as well as in nature
and provide an extremely effective means of optimising functional and structural
performance of diverse mechanical systems. Fibre-reinforced carbon-composite
laminates are a typical example where different laminae are stacked on one an-
other, each one with fibres oriented in a specific direction to provide a composite
structure with optimised performance [43]. Examples in nature range from struc-
tural geology, e.g. the structure of the Earth itself [58], but also sedimentary rock
structures [9], to the morphology of trees and plants [45]. The best example is
probably the human body, where skin, blood vessels, cell membranes, to mention

just a few, are all made up of thin layers [64].

In civil engineering, the use of composite structures, where two or more compo-
nents from one or more different materials are used in a single cross section, is very
common. The basic idea is to combine the components in such a way that each
of them fulfils the function for which its material characteristics are best suited.
Due to this optimised performance of their components, the composite systems
are economical and have a high load-bearing capacity. Steel-concrete composite
beams, wood-steel concrete floors, coupled shear walls, sandwich beams, concrete
beams externally reinforced with laminates and many others are all examples of
composite structures in civil engineering. The mechanical behaviour of these struc-
tures largely depends on the type of connection between the layers, which can be
continuous (glue) or discrete (mechanical shear connectors such as nails, screws
and bolts). Continuous glued interconnection in comparison with discrete shear
connectors is considerably stiffer, but it also provides only a partial interaction
between the layers with interlayer slip and uplift [73|. Therefore, a partial interac-
tion has to be taken into consideration in the mechanical analysis of multi-layered

structures.



Research and application of layered composite structures in many areas of engi-
neering has increased considerably over the past couple of decades and continues
to be a topic of undiminished interest in the computational mechanics community:.
Modelling such structures can have many different aspects, considering the geom-
etry of the problem, material properties, time-dependence of the applied loading

etc.

In the present work, the area of interest is reduced only to plane static problems.
Thus, the state of the art for the three-dimensional models and the models which
include dynamic effects will not be presented. To model the layered structures,
in the present work, beam theory is used, meaning that the geometrical and ma-
terial properties, the displacements and rotations, the boundary conditions and
the applied loading, are reduced to a single reference axis. This concept results
in a one-dimensional formulation, where all the basic variables vary only with
respect to a co-ordinate along the reference axis. In comparison with two- and
three-dimensional theories (see [67]), beam theory is simpler. It is true that it
also neglects a number of planar and spatial effects, but, in many applications,
the beam models offer a satisfactory accuracy and less computational effort in

comparison with more complex 2D or 3D models.

Basic equations defining a layered beam consist of kinematic, constitutive, equilib-
rium and assembly equations. Kinematic equations define the relationship between
the displacements and the strains of the structure, constitutive equations relate the
internal forces (stress resultants) to the strains, equilibrium equations define the
internal-external forces relationship, while in the assembly equations the connec-
tion between layers is defined. Kinematic equations for the plane beam problem
in the exact (non-linear) form were given by Reissner [48]. If small displacements
and rotations in the deformed state are assumed, which is often the case in civil
engineering problems, the exact Reissner’s equations can be reduced to a linear
form, also known as Timoshenko’s beam theory [66]. In both Reissner’s and Tim-
oshenko’s beam theories the strains produced by the shear forces are considered.
If they are neglected, Timoshenko’s beam theory reduces to Euler-Bernoulli or
classical beam theory [10], which is also given in a linear form. The constitutive

equations can be also given in linear or non-linear form.



Only in case when both kinematic and constitutive equations as well as the equi-
librium equations are given in linear form the solution of the problem can be
obtained analytically. In case of geometrical or/and material non-linearity, the
solution can be obtained only numerically. The method which is used most often
for the problems of layered structures is the finite element method (FEM). Since
the layered structures can have two or more layers, the layered beam models from
the literature are usually given for two-, three-(sandwich) or multi-layer beams.
Conditions at the interconnection of a layered beam are fundamentally important
for the model. Interconnection can be defined only in discrete points, or it can
be modelled as continuous, which can be either rigid or allow for interlayer slip

and /or uplift.

In this thesis three different models for multi-layer beams with arbitrary number
of layers and zero-thickness interlayer interface are proposed. The first model deals
with linear kinematic and constitutive relations for each layer and interface enables
an analytical solution. The second model focuses on geometrical non-linearity for
the case of rigid connection between the layers, while the third model introduces
material non-linearity at the interconnection. Since analytical solutions for the
last two models cannot be obtained, a finite element formulation is proposed. A
brief introduction to each of these parts with corresponding state of the art is

presented next.

In the fist part of the thesis, an analytical solution for a multi-layer beam with
compliant interconnections is presented. For different conditions at the intercon-
nections (completely rigid interconnection, rigid interconnection allowing for indi-
vidual rotations of layers, interlayer slip, interlayer slip and uplift) considered, four
basic models with their systems of differential equations are obtained. Restraining
the interlayer degrees of freedom (interlayer slip, uplift and rotation) reduces the
system of differential equations, which are solved considering the corresponding
boundary conditions. The number of layers is arbitrary, and each layer can have
individual material and geometrical properties, as well as its own applied loading.

The results for this model are presented in [72].



Considering the analytical solutions for layered beams, to this end, a large num-
ber of references exist. Among many others, a few examples are given here. Mc-
Cutheon [37] proposed a simple procedure for computing the composite stiffness
of a wood bending member with sheathing attached non-rigidly to one or both
edges. Girhammar and Pan [21] proposed an analytical solution for a geometri-
cally and materially linear two-layer composite beam with interlayer slip using the
Bernoulli beam theory. Schnabl et al. [53] dealt with buckling of such beams,
while Schnabl et al. [54, 57] and Kryzanowski et al. [35] used the Timoshenko
beam theory for the two-layer beams/columns. In addition to interlayer slip, in-
terlayer was introduced to a two-layer beam model by Nguyen et al. [39], Adekola
[1], Gara [20], Ranzi et al. [46, 47| and Krofli¢ it et al. [32]. More recently, Schnabl
and Planinc [55] applied both interlayer slip and uplift in the buckling analysis
of two-layer composite columns where transverse shear deformation is also taken

into consideration.

For the sandwich beam model with partial interaction Schnabl et al. [56] pro-
posed an analytical solution, while Attard and Hunt [4| presented a hyperelastic
formulation of a sandwich column buckling where interlayer slip and uplift were
neglected. Frostig [19] presented the classical and the high-order computational
models of unidirectional sandwich panels with incompressible and compressible

cores.

An analytical model where the effect of interlayer slip and uplift on mechanical
behaviour of layered structures is neglected was proposed by Bareisis [6]. Sousa Jr.
et al. [63] proposed an analytical solution for geometrically and materially linear
multi-layer beams allowing for interlayer slip, while the aforementioned model

proposed by Skec et al. [72] introduced both the slip and the interlayer uplift.

In the second part of the thesis, a geometrically exact (non-linear) finite element
formulation for a multi-layer beam with a rigid interconnection is presented. In-
terlayer slip and uplift are not allowed, but each layer can have individual cross-
sectional rotation. Such a formulation is very suitable for modelling beams where
cross-sectional warping is pronounced (like thick beams, for example), since the
layers’ cross-sections, in deformed state, form a piecewise-linear shape, which ap-

proximates a warped cross-section. Although this formulation allows for assigning



individual material and geometrical properties for each layer, due to its rigid in-
terconnection, it is more suitable for modelling homogeneous beams, rather than
composite beams where interlayer slip (and uplift) are influences that should not
be neglected. The results from this model are presented in the work by Skec
and Jeleni¢ [71], and the formulation has been later used as a base for a layered
reinforced-concrete planar beam finite element models with embedded transversal

cracking proposed by Séulac et al. [70].

Considering the layered beam models with geometrically exact formulation, two-
layer models, including material non-linearity and interlayer slip and uplift, were
proposed by Krofli¢ et al. [33, 34]. Vu-Quoc et al. |74] proposed a geometrically
exact formulation for sandwich beams with a rigid interlayer connection and a
generalization to multi-layered beams |75, 76]. In this formulations the equilibrium
equations were derived using the Galerkin projection, in contrast to the principle

of virtual work used here [71].

Another important phenomenon in the analysis of layered structures is delamina-
tion, which is introduced in the third part of the thesis. Delamination is one of the
most prevalent and severe failure modes in layered composite structures, difficult
to detect during routine inspections and presents one of the biggest safety chal-
lenges that the aerospace industry has been facing in the last decades [14]. Since
the finite element method is commonly used to analyse composite structures, it is
necessary to incorporate delamination in the FE model to assess the integrity of

a damaged structure.

When initially proposed by Barenblatt 7], cohesive zone models (CZMs) provided
a radically new approach to the phenomenon of crack propagation, fundamentally
different from that of Griffith [22] in that they allowed the fracturing process to
be governed by the stress distributed over a finite region around the crack tip,
typically named ’the process zone’, rather than the stress concentrated at the
crack tip. This model allowed the transfer of stresses over the crack provided
it remained sufficiently narrow, and could be justified by a variety of physical
phenomena taking place in materials during fracture [8]. Ever since Hillerborg et
al. |25] made their first FE implementation of the model, CZMs have continued to

generate much interest within the computational mechanics research community



reflected by the immense literature in this field published in the last two decades

(see e.g. [15, 68, 78] and the references therein).

Obviously, it can be appreciated that to model complex layered structures nu-
merically, along the lines of the cohesive-zone theory, very sophisticated and com-
putationally intense numerical procedures are needed, which are often too com-
putationally expensive to be applicable as every-day design tools in engineering

practice.

To bridge the gap between such expensive computational procedures and a desire
of the structural analyst to have more effective and engineer-oriented design tools,
in this thesis, a finite element formulation for a multi-layer beam with intercon-
nection is presented. Here, the processes of crack occurrence and propagation,
damage-type material softening, and eventual delamination are modelled using
beam-type finite elements stemming from Reissner’s beam theory [48] to describe
structural layers and interface elements with bi-directional stiffness [2|. Beam el-
ements are more intuitive than solid elements and in geometrically linear analysis
Reissner’s theory corresponds to the well-known Timoshenko theory which forms
a part of every engineering education, and their behaviour is expected to be more
familiar to the analyst. More importantly, they make use of a smaller number of
degrees of freedom eventually reducing the overall computational burden. Finally,
beam elements can be used with very good accuracy for problems such as double
cantilever beam (DCB) and peel tests [31], which are widely used to characterise
fracture as discussed above. The results presented in the third part of the the-
sis, show that modelling delamination using beam finite elements, rather than 2D

plane-stress finite elements, is an alternative that should be seriously considered.

In spite of all these arguments, research in damage and delamination using beam
finite elements has been rather scarce and, to the best of author’s knowledge, has
not addressed the dual-mode delamination. In particular, Sankar [51] proposed a
geometrically linear laminated shear deformable beam finite element divided into
two sublaminates connected by 'damage struts’. Roche and Accorsi [50] developed
a geometrically linear finite element for laminated beams based on simplified kine-
matic assumptions with an additional nodal degree of freedom which is activated

when the element contains delamination. Eijo et al. [18] proposed a beam model



for mode II delamination in geometrically linear laminated beams assuming an
isotropic non-linear material behaviour and a piecewise linear (zigzag) displace-
ment functions to introduce the interlayer slip into the displacement field. In the
work of Krofli¢ et al. [34], geometrically exact two-layer beam finite element with
uncoupled non-linear laws of interlayer contact in both tangent and normal direc-
tions is presented. In a more theoretical vein, the issues of damage and delamina-
tion in continua subject to beam-like kinematic constraints have been investigated
very recently by de Morais, who proposed an analytical solution for mode II [16]
and mode I delamination [17] in geometrically linear beams with bilinear cohesive
law, and by Harvey and Wang, who presented analytical theories for the mixed-
mode partitioning [77] of one-dimensional delamination in laminated composite

beams within the context of both Euler and Timoshenko beam theories [23].

Each part of this thesis presents a procedure for the analysis of multi-layered beams
with different formulation of the governing equations. Depending on the form of
kinematic and constitutive equations, linear and non-linear solution procedures are
presented. The final chapter of the thesis gives the conclusions and the guidelines

for the future work.



2 LINEAR ANALYSIS OF MULTI-
LAYER BEAMS WITH COMPLIANT
INTERCONNECTIONS

2.1 Introduction

In this chapter, analytical models of multi-layer beams with various combinations
of contact conditions are presented. The models take into account both inter-
layer slip and uplift, different material and geometrical properties of individual
layers, different transverse shear deformations of each layer, and different bound-
ary conditions of the layers. The analytical studies are carried out to evaluate the
influence of different contact conditions on the static and kinematic quantities. A

considerable difference of the results between the models is obtained.

2.2 Problem description

A model of a planar multi-layer beam composed of N layers and N — 1 contact
planes is studied with the following assumptions:

1. material is linear elastic,

2. displacements, rotations and strains are small,

3. shear strains are taken into account (the Timoshenko beam),

4. normal strains vary linearly over each layer (the Bernoulli hypothesis),

5. friction between the layers is neglected or is taken into account indirectly

through the material models of the connection,



6. cross sections are symmetrical with respect to the plane of deformation and

remain unchanged in the form and size during deformation,

7. both transverse and longitudinal separations between the layers are possible

but they are assumed to be mutually independent and

8. loading of a multi-layer beam is symmetrical with regard to the plane of

deformation.

An initially straight, planar, multi-layer beam element of undeformed length L is
considered, of which two adjacent layers ¢ and i+ 1 separated by a contact plane «
are shown in Fig. 2.1. The beam is placed in the (X, Z) plane of a spatial Carte-
sian coordinate system with coordinates (X,Y, Z) and unit base vectors Ex, Ey,
and Ez. Each layer has its own reference axis which coincides with the layer’s
centroidal axis. The reference axis of an arbitrary layer i is denoted as 2’ in the
undeformed configuration and Z* in the deformed configuration. The material par-

ticles of each layer are indentified by material coordinates z*, y*, 2* (i = 1,2,..., N).

Besides, the material coordinate z° of each layer is identical with its reference axis.

In addition, it is assumed that 2! =22 = ... =2V = 2.
E,
Og e X
By |
undeformed configuration
< L >
di vV oa-1-- - ,
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F1GURE 2.1: Undeformed and deformed configuration of a multi-layer beam.



The multi-layer beam element is subjected to the action of the distributed load p’
= pxEx+p,Ez and the distributed moment m’ = m!, Ey along the length of each
layer. A differential segment of length dx of layer ¢ with the applied loading with
respect to the reference axis, the cross-sectional equilibrium forces and bending
moments, and contact tractions in tangential and normal directions p;o—1, Dt.q,

Pna—1, and p, o is shown in Fig. 2.2.

pf a—1 pn,, a—1
Lologi TMrdM el
o "2 lndlal dl ‘VH _______ Cm iy N!+(l_.~£z ........... -
ca MOy mi[Todol hed
’ dx R

FIGURE 2.2: Internal forces and interlayer tractions in a multi-layer beam ele-
ment.

External point forces and moments can be applied only at the ends of the multi-
layer beam element and are introduced via boundary conditions. The system of
linear governing equations of the multi-layer beam is obtained using a consistent
linearization of governing non-linear equations of a Reissner planar beam in the
undeformed initial configuration [48]. Thus, the linearised system of governing
equations consists of equilibrium and constitutive equations with accompanying
boundary conditions of each layer and the constraining equations that assemble

each layer into a multi-layer beam.

2.3 Governing equations

2.3.1 Kinematic equations

The kinematic equations listed below define the relationship between the displace-

ments and strains for an arbitrary layer i:

u' — e =0,
wz‘/ + (,Oi . /yi — 07 (21)
g01’/ — gl =



In Egs (2.1), v, w', " denote the components of the displacement and rotation
vector of the i*" layer at the reference axis ' = x with respect to the base vectors
Ex, Ey, and Ey, respectively. The prime (o)’ denotes the derivative with respect
to 2. The extensional strain of the reference axis of the i*" layer, the shear and
the bending strain of the corresponding cross section of the i'" layer are denoted

by €%, 7%, and k', respectively.

2.3.2 Equilibrium equations

The relationship between the loads applied on the layer ¢, the corresponding in-
ternal equilibrium forces and the distributed contact tractions are defined by the

equilibrium equations derived from Fig. 2.2:

Ni/ + pr — Pta—1 + Pta = 07
Qi/ + plZ — Pn,a—1 + Pna = 07 (22>

M? — Q' + mé/ +pt,a—1di +pt,a(hi - di) =0,

where N and Q! represent the axial and shear equilibrium forces while M? is the
equilibrium bending moment of the i*" layer. On the other hand, p%, pi,, and
mi are the distributed loads on i® layer given with respect to the reference axis
x' = . The tangential and the normal interlayer contact tractions on the contact
plane « are denoted by p; o and p,, . On the outer planes of the multi-layer beam

(=0 and o« = N) no contact exists, thus

Pto = Pno = 0,

Pi,N = Pn,n = 0.
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2.3.3 Constitutive equations

The constitutive internal forces N, QL, and M}, are related to the equilibrium

internal forces N, Q¢, and M? by the following constitutive equations:

N —NL =0,
M — ML =0.

In the case of a linear elastic material and when the layer reference axis coincides
with its centroidal axis, the constitutive forces are given by the linear relations

with respect to €', k%, and v* [26]:

L =LAl = Cie,
Ot = ki, G'A'y' = Ciy', (2.5)

L= EJK = Cik

In Egs (2.5), E* and G" are the elastic and shear modulus, A’ denotes the area of
the cross section, and J is the second moment of area of the " layer with respect
to the reference axis 2* = z. The shear coefficient of the cross section of the ith

layer is denoted by k:; For rectangular cross sections and isotropic material this

coefficient is 5/6 [12].

2.3.4 Constraining equations

The constraining equations define the conditions by means of which an individual
layer 7 is assembled into a multi-layer beam. When a material point on the contact

plane a between layers ¢ and i + 1 is observed (see Fig. 2.1), it can be identified

in the undeformed configuration with points T%(z, 2* = h' — d*) and T" ™! (z, 2/ =
—d"), the first one on the lower edge of the upper layer i and the second one on the
upper edge of the lower layer ¢4 1. In the deformed configuration these two points
become separated due to an interlayer separation. Vectors R'(z, 2! = h* — d') and

Ri+!(z, 21 = —d!) determine the position of points 7° and 7' in the deformed
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configuration:

R'(z,2") = (z +u'(z) + d’(z,2")) Ex + (' = h' + w'(z) + v'(z, 2")) Eg,
R (z, 2 = (z + o™ (2) — " (2, 2")) Ex + (&7 + w'™ () — v (2, 2'1)) Eg,
(2.6)
where a'(z,2") = (h' — d')sinp'(x), a™(z,2) = d™sin (), vi(z, 2') =
(R — d*) cos p'(x), and v' ™ (z, 27t1) = d"! cos "™ (x). Corresponding to the as-
sumption of small displacements and rotations, the vector of separation of points T
and T, ro(z, 2, 2+1) = R+ (2, 2+1) —Ri(z, 21) (a = 1,2,..., N—landi = a),
reads
ro(z, 2, 2t = (ui+1(l,) — i (z) — AL () — (B — dl)gol(x)) Ex+ .
+ (w™(z) — w'(2)) Ez. .
An interlayer slip between the adjacent layers is denoted by Awu, and can be

defined from Eq. (2.7) as
Aty = uit! — i — g+ (B — @), (2.8)

Since all the quantities in Eq. (2.8) are functions of material coordinate z, the no-
tation of the argument x is abandoned. The interlayer uplift (vertical separation)

is marked by Aw, and defined from Eq. (2.7) as
Aw, = w'™ —w'. (2.9)

The term interlayer distortion, A¢p,, is introduced as well to describe the difference

between the rotation angles of adjacent layers as
Apy = @ — . (2.10)

In general, flexibility of the contact highly depends on the way the contact is en-
forced. A constitutive law of the connection between the layers generally assumes
a non-linear relationship between contact displacements and interlayer tractions
[2, 69]. In the present paper, as generally proposed in the structural engineering
practice, a linear constitutive law of the incomplete connection between the lay-

ers is assumed, see e.g. [1, 32, 57]. For the contact plane «, a linear uncoupled
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constitutive law of the connection between the layers can be written as

Pta = Kt,aAuom
(2.11)
Pna = Kn,aAwom

where K, , and K, , are the slip and uplift moduli at the interlayer surface. On

the other hand, the rotational degree of freedom in the contact defined e.g. as

My.q = Kpalpq, (2.12)

is in this paper not taken into account. With Eq. (2.10) only the difference of
the cross sectional rotations are defined which is due to different transverse shear
deformations of the layers. Eqs (2.11) can be used only in case when interlayer
displacements are realised, thus Au, # 0 and/or Aw, # 0. For example, in the
case when Au, = 0 from Eqgs (2.11) it follows that p;, = 0. That is obviously
incorrect, since interlayer tractions also appear when interlayer displacements are
absent. This former contradiction originates from the fact that in the limiting
case, i.e. K;, — oo and K,, — 00, the system of governing equations of a
multi-layer composite beam becomes singular [27]. In these cases, the governing
equations should be reformulated in a way that will be described below. Note
that when Awu, = 0, the tangential contact tractions p;, are calculated from
the equilibrium equations, i.e. Eqgs (2.2). Similarly, when Aw, = 0, the same

equilibrium equations are used to express pj o, as well.

2.4 Basic models

The interlayer degrees of freedom can be described using Au,, Aw,, and Ay,. By
allowing or constraining a specific degree of freedom in the contact plane, 23(N —1)
different combinations of contact plane conditions are introduced. In the present
paper only four basic and most common models of different connections between
the layers are elaborated although models where the constraining equations are
different for each contact plane can be formulated in a similar manner. These com-
mon models and their corresponding interlayer degrees of freedom are presented

in Tab. 2.1.
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TABLE 2.1: Basic models with corresponding interlayer degrees of freedom

MODEL Au Aw Ay
Mooo X X X
Mooz X X Vv
Mio1 \/ X \/
Mi1, vV v

X: zero value; /: non-zero value;

The model Mggg obviously reintroduces the Bernoulli hypothesis over the entire
cross-section (K, — 00, K, , — o0 and K,, — 00), while the Mg relaxes
this hypothesis to make it hold for each layer separately, thus K;, — oo and
K, o — 00, but K, € [0,00). In the models Myo; (only K, o, — 00) and My

the deformed cross-sections are not requested to remain continuous.

2.4.1 Model "000"

The contact plane conditions for the model Mggg according to Tab. 2.1 are de-

scribed by the following expressions (i = 1,2,..., N — 1):

ui—‘rl _ ui + (hz _ dz + di—H)gOi,

wt = wi+1 — u)k7

Pl =t =",

I (2.13)
€z+1 = gt 4 (hz — 4 derl),%z’

7=yt =9,

Kz — :‘ii+1 — lik,
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where the index k marks an arbitrary layer from ¢ = 1,..., N. After considering
relations (2.13) in the general governing equations of the multi-layer beam (2.1)-

(2.5), the basic equations of the model Mygg are the following:

N
uk — ek =0, J\/”—l—pr'X:O,
=1

N
wk/—i-gOk—’Yk:O, Ql‘l‘zpizzov
i=1 N N
O — kP =0, M —Q+ Z’Mf + Z (pti—1d’ + pri(h' —d')) = Oor
=1 =1

(2.14)

N
{TOT_Q+Zm§/207
i=1

N N N
N=>Cie, Q=) Clv', M=) Cix,

i=1 i=1 i=1

where N N N
N=Y N, Q=> 9, M=) M.

Since every layer has its own separate reference axis, M is not the total cross-
sectional bending moment of a composite beam because the axial forces N, that
are mutually dislocated, contribute to the total bending moment as well. Thus,
Mror = M+ %N “ v’ where r' is the distance between the reference axis of the
it" layer and th(; arbitrary axis with respect to whom the total bending moment
is computed. The system (2.14) is a system of nine equations for nine unknown
functions u*, w*, ¢*, N, Q, M or Mror, €, 4%, and k* where the additional
functions p;; are expressed in terms of strains * and 4* using (2.2), (2.4) and
(2.5). Using the last three equations of system (2.13), we express ¥, 4% and "
in the system (2.14) in terms of u*, w* and ¥, finally obtaining a system of six
ordinary linear differential equations with constant coefficients for six unknown

functions u*, w*, *, N, Q, and M or Mror. This reduced system can be solved

analytically with the following boundary conditions from which six constants of
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integration are found:

LN(0) + (1= f7) u*(0) = fl S+ (1= f1) U (0),

» Q(0) + (1= f3)w"(0) = + (1= f)U3(0),

3 M(0) + (1= f3) £"(0) = f3 Sy + (1= f5) U5 (0), (2.15)
AN(L) + (1= f)uf(L) = + (1= ) UL (L),
fr QL) + (1= fy)wh(L) = fy Sy + (1= f5) U3(L),
fs M(L) + (1= f5) ¢"(L) = f5 S5 + (1 = f5) U5 (L),

N N
where SY = ZSg’i and SI = ZS,%Z (n = 1,2,3), are the external end point
i=1 '
forces and moments of the beam, while U2 and UZ are the displacements and the

rotations at the beam ends that are identical for all layers. The coefficients f° and

fE have values 1 or 0 depending on the type of the support at the beam ends.

2.4.2 Model "001"

This model is defined by the contact plane conditions described below:

ui—l—l — ui + di+1g0i+1 + (hz . dz)(pz

w = wit! = Wk,
. o R (2.16)
€1+1 = gt + dz+1/€z+1 + (hz o dl)/il,
R I )
where ¢ = 1,2,..., N — 1. The basic equations of the model are written by
considering relations (2.16) as (i = 1,..., N)
N
uk — ek =, N'+> pi =0,
i=1
N
, 2.17
wk,—i-gOk—’}/k:O, Q/_*_szZ:O’ ( )

o' — k' =0, M — Q'+ miy + priad + pr(ht —d') =0,
N N
N=) Cie, Q=) 0y, M =Cix'
i=1 i=1
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Similarly as in the model Moggp, the contact tractions pi, (o = 1,2,...,N —
1) are expressed via the strains e, v*, and s which are further expressed via
displacements u*, w*, and % (i = 1,2,...,N). This allows reducing the system
(2.17) to a system of 4 + 2N linear first-order ordinary differential equations with
constants coefficients for the same number of unknown functions: u*, w*, N, Q,
¢, and M%(i = 1,2,...,N). These functions are determined after the system is

solved in conjunction with the following boundary conditions:

FIN(0) + <1—f1>u’“<0>=fls° (1- )y,

f5Q(0) + (1 — ) wh(0) = f5 85 + (1 = f3) U3,

3 M) + (1 - )@Z(O)zf“S(” + (1= f") U5", 2.18)
FEN(L) + (1= f)uf(L) = +(1—-fHUt,

fr QL) + (1= f)wh(L) = f (1—f§>U2L,
f3 ML) + (1= f5) ' (L) = st’ + (1= £ U,

where S0 = Z 5% and SE = Z Ski(n =1,2) and fJ" and f;"" are the boundary

conditions coefﬁcnents at the beam ends for each layer. They have values 1 or 0
depending on the type of the support at the both ends of each layer. External
moments and rotations at the ends of each layer are denoted by Sg’i, SL’i and
U, Ui’ respectively. In addition, note that U?, U9, UL, and U} are the same

for all layers.

2.4.3 Model "101"

Using the contact conditions from Tab. 2.1, the following relations are derived

(a=1,2,...,N —landi = «)

wt = wi—l—l — wk
,YiJrl — ,Yz' + gOz'Jrl _ 907;, (2‘19)
= Kt7aAua
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The basic equations for the model Mg, are presented below (i = 1,2,..., N):

u’ —et =0, N+ ple —pric1 + pri =0,

N .
Wt b k=0, O+ > ply =0, (2.20)
o’ — K =0, M = Q'+ miy + prid’ + pria (b —d') =0

N
N'=Cie', Q=) 0y, M =Cs'.

The strains €, v* and x? are expressed via internal forces N, Q and M’ from the
constitutive equations (last 2NV + 1 equations of the system (2.20)). The contact
tractions p;, are expressed via displacements u’ and rotations ¢" from Eqs (2.19)
and (2.8). The system (2.20) is reduced to a system of 2 + 4N linear first-order
ordinary differential equations with constant coefficients for the same number of
unknown functions: u?, w*, ¢!, N%, Q, and M!(i = 1,2,...,N). To solve this

system the corresponding boundary conditions are considered:
PIN0) + (1= M) ui(0

(
2 Q(0) + (1 = f3)wh(0
3" MU0) + (1= f5") ¢'(0

_ Oz SOZ ( {),Z) U{)’i,

f <l_f2)U§7
st -

)
)
)
)
)
) =

. - (2.21)
N+ 0= 0 = E1SE 0= 0
f5 QL)+ (1= f)wh(L) = fy Sy + (1= fy) Uy,
5 AR+ (1 S $00) = 89585+ 1— 1) 03,
where 59 = Z So* and S¥ = Z Syt and f)" and f{' are the boundary condi-

i=1 i=1
tions coefficients with values 0 or 1 depending on the type of support the ends of

each layer. The external longitudinal point forces and horizontal displacements at
the ends of each layer are denoted as S? * SlL * and U{) * UIL " respectively. Again,

note that UY and Ul are the same for all layers.

2.4.4 Model "111"

The contact plane conditions for this model are expressed using only the con-

straining equations (2.11). The basic equations of this model are presented below
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u’ — et =0, N +pl —prio1 +pri =0,
w” + ¢ =" =0, Q" + pYy — Pt + pni = 0, (2.22)
o’ — k' =0, MY — Q'+ my + priad +pi(h' —d') =0,

N = Cie, Q' = Ciy', M = Cik'.

The strains €%, 7%, and ? are expressed via internal forces N, Q¢ and M? from the
constitutive equations (last 3N equations in the system (2.22)) and the contact
tractions p;, and p, o from Eqgs (2.11). System (2.22) is reduced to a system of 6N
linear first-order ordinary differential equations with constant coefficients for the
same number of unknown functions: u’, w’, ¢*, N, @, and M* (i =1,2,...,N).

The corresponding boundary conditions are:

FUENEO) + (1= f)ul(0) = £ S7 + (1= f) U,
2" Q(0) + (1= f3")w'(0

3T MU0) + (1= f5) '
AINAL) + (1= i) ul(L
QL)+ (1= )
5 ML) + (1= f5)

RS+ (L= £ Uy

)
)
=S
)
)
)

©'(0

fiT s+ (A= A0

Nw'(L) = f" 8+ (L= £ Uy

Li ali Ly 77Lyi
@'(L) = f37" S5 + (1 = f37") Ug™,

where f2" and fI(n = 1,2,3) are the boundary conditions coefficients for each
layer, while S%¢ SZi and U UL are the external transverse point forces and

vertical displacements at the ends of each layer, respectively.

2.5 Analytical solution

The reduced system of generalised equilibrium equations (2.14), (2.17), (2.20),
and (2.22) are the systems of linear first-order ordinary differential equations with
constant coefficients. Similarly, the systems of generalised equations of other math-
ematical models not introduced in the paper are also systems of linear first-order

ordinary differential equations with constant coefficients. In general, such systems
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of equations can be written in the following compact form as
Y'(x)=BY(z)+g, Y(0)=Y,, (2.24)

where Y is the vector of unknown functions, g is the vector of external loading, B
is the matrix of constant coefficients, and Yy is the vector of boundary parameters
that are determined from the boundary conditions of the multi-layer beam. The
solution of the inhomogeneous system of differential equations (2.24) is composed

of homogeneous and particular solutions [44].

Y () = exp(Br)[Y + /0 " exp(—BE)g de] (2.25)

When a multi-layer beam is subjected only to point forces and moments, i.e g = 0,

the solution of (2.24) is composed of a homogeneous solution only
Y (z) = exp(Bx)Y (2.26)

Similarly as in the case of homogeneous structures, the multi-layer structures are
composed of multi-layer beams. In such cases, the analytical solution is obtained
from the analytical solution of individual multi-layer beam. The procedure is very

similar to the finite element method.

2.6 Numerical results and discussion

Two numerical examples are analysed in detail in order to illustrate the present
theory. In the first example the influence of various parameters on the midspan
vertical displacement of a sandwich beam has been investigated. The influence
of contact discontinuity between the layers of a composite beam on its bearing

capacity has been illustrated in the second example.
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2.6.1 Simply supported sandwich beam with uniformly dis-
tributed load

A parametric study for this example has been performed on a simply supported
sandwich beam subjected to a uniformly distributed load (see Fig. 2.3). The
sandwich beam layers are denoted by ¢ = a,b,c and the contact planes by a =
1,2, respectively. The geometrical and material characteristics are the following:
L' = L = 100mm, h* = h¢ = 1mm, h* = 18 mm, b = 60mm, £* = £ = 2 -
10°N/mm? E* = E*/50,G* = E*/8,G* = 3/4E",G° = E°/8 k., = 5/6. The
uniformly distributed load, p%, = 2 N/mm, is applied on the layer a.

I . Section I-I:
; P, layer“a contact plane“1“
EEENEERNENENEEEENEN -
E\ , layer“b“ E) <
G PP [ SR G S S
EZV | E/ )
7. . V4 layer“c“ C\oTnact plane “u
< ! > < =
II L ba: bh: b('

FIGURE 2.3: Simply supported sandwich beam with uniformly distributed ver-
tical load.

Note that the values of the shear moduli fall outside the range of possible values
for an isotropic material, but are perfectly acceptable e.g. for timber [57]. Due
to symmetry, only one half of the sandwich beam has been analysed, so that the

boundary conditions are given as:
N0) =N®0) =0, w'(0)=0 M0)=0, (2.27)
on the left-hand side of the beam, and
u'(L/2) =0, QY(L/2)=0, ¢'(L/2)=0, (2.28)

on the middle of the beam, where (i = a, b, ¢). Defining the boundary conditions in
this manner allows us to solve the problem where K;, = 0, (o = 1,2). In Tab. 2.2
the vertical displacements of the centroid axis at the midspan of the sandwich beam
for different multi-layer beam models are presented depending on the L/h ratio.

For L/h = 5 the same characteristics as given above have been used, while for other
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L/h ratios only the length of the beam has been modified accordingly. A vertical

displacement of a homogeneous beam according to the classical engineering theory
bpy Lt pyL?
384F1,  8k,GAx

proposed by Timoshenko [66], we = , has been used as a refer-

he hb 2 hb he 2
ence vertical displacement, where E1,, = El, +E“A“% +ECAC%,
Ely = Y E'I" and k,GA, = Y kG'A". The non-dimensional vertical displace-

i=a i=a

ment, Wy = w—M, is introduced, where w,; is the vertical displacements at the
midspan of a saoridwich beam for an arbitrary model M. Four values of the slip
modulus K, for @ = 1,2 are analysed: 0, 1,10 and 100 N/mm?. The model
Moo shows exactly the same behaviour as the homogeneous beam, which is due
to its rigid interlayer connection (Au, = Aw, = Ay, = 0 where o = 1,2). The
differences between the results of the models Mggg and Mgg; range between ap-
proximately 7% for a moderately thick beam (L/h = 10) to more than about
53% for a very thick beam (L/h = 2). By allowing the interlayer slip to occur,
the vertical displacements at the midspan increase more considerably, especially
as interaction between the layers gets weaker (K, — 0). In the last column in

Tab. 2.2 the non-dimensional vertical displacement for a sandwich beam with no

interaction between the layers is given according to the Bernoulli beam theory as

_ Wo . 5 py L

= — with wy = ——
O e T T BR4E,
As expected, the results of the model Myo; with K, = 0 approach this solution

, where index 0 refers to completely separate layers.

as the beam becomes thinner.

TABLE 2.2: Non-dimensional vertical displacement (wy; = wpr/we) at the
midspan for various contact plane conditions depending on L/h ratio.

Mooo  Moo1 Mio1 wo
L/h  weo [mm] Ko =100 Kyor =10 Kyjor =1 Kior =0°
2 0.00106  1.00000 1.53262 5.58215 6.51117 6.62796 6.64128 5.29600
5 0.01621  1.00000 1.21944 6.09954 12.28912 13.88957 14.09633  13.54423
7 0.05321 1.00000 1.13108 4.69571 12.52822 15.71016 16.17645  15.84678
10 0.20161  1.00000 1.07063 3.24534 11.06386 16.58495 17.59765  17.42006

* a = a,b; *in N/mm?

The core thickness ratio influence is described by h®/h, where h® is the core’s
height while A is the total height of the sandwich beam cross-section. By changing
the core height but keeping the total height constant (A = 20 mm) the vertical
displacement at the midspan is studied (see Fig. 2.4). The values of K, are
written in the parentheses next to Mgy in the legend to Fig. 2.4. It is noticed

that w increases monotonically with h?/h ratio for the models Mggg and Mggy, but
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for the model M1 an extreme value of w appears for the presented values of K ,.
For K;, = 0, the maximum vertical displacement at the midspan is obtained for
h¢/h ~ 0.8, while for the higher stiffnesses K}, the maximum vertical displacement
occurs at lower h,/h ratios. From the expression for wy, it can be easily shown
that the beam stiffness E1y has a maximum at h®/h = 0.7795 which coincides very
well with the present result for the model Mo, with K;, = 0.

N
0.25 [ =™ My ra ’\,\
——=- My ///.’ =N \\-..
0-20 f weveces M (100%) 77 .
= 77
g —-—-= M, (10%) 5/
& 0.15 iy ) y:
S ——. o (19) y: -
0.10 M, (0* A
101 (0%) ‘/, ————
P
0.05 e
_,.e-'-“"""'-"—:——
0.00 m—————— e e
0.2 0.4 0.6 0.8
h/h

FIGURE 2.4: w vs. hy/h for different contact plane conditions (* represents Ky o
in N/mm?).

The influence of the core elastic-to-shear modulus ratio, E°/G®, on midspan ver-
tical displacements is displayed in Fig.2.5. The range 0 < E°/G® < 100 is rea-
sonable only for anisotropic materials. A considerable difference of the results
between the models Moo and Mgy is observed by the interlayer distortion which
is dependent on the layer’s shear modulus. In case when Aw, = 0 it follows that
Ap, =yt —~t = QL /CE — O/ (see Eqs 2.5), which means that the higher
values of the shear moduli produce smaller values of the interlayer distortion and
thus smaller vertical displacements. Obviously, as the E”/G® ratio increases the
differences between the models Mggg and Mgg; become more pronounced. For
models Mjo; the interlayer slip (depending on different K, values) causes a con-
siderable increase in the vertical displacements in comparison to model Mggy. It

is noticed that all models have almost linear E;,/Gj, — w relationship.
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FIGURE 2.5: w vs. E®/GY for different contact plane conditions (* represents
Ko in N/mm?).

2.6.2 Contact discontinuity influence studies

A simply supported two-layer beam is analysed in this example (see Fig. 2.6).
Layers are marked by ¢ = a,b. The geometrical and material characteristics are
as follows: L' = L = 200cm,h’ = 10cm, b’ = 20cm, £ = 800kN/cm? G =
E'/16,k}, = 5/6. The uniformly distributed load, p = 0.2 kN/cm, is applied at

the reference layer of the lower layer b.

1 b Section I-I:
f by
E, y= X, x| _Ey] layer“a“
E, ' = E, | layer“b«
AN EREEREYA
< . >l > > -«
; ' Ll Lz L3 } ba: bb
} I L
IZ, zyz?

FIGURE 2.6: Simply supported two-layer beam.

The beam is divided into three segments, namely e;, e; and e3, whose lengths
are Ly, Lo, and Ls, respectively. The central segment is made of two com-
pletely separate layers, hence model My, with K; = K, = 0 is used. The
relative mid-segment length is defined by 5 = Ly/L. The outer segments’ lay-
ers are connected according to the model Mjg;. The connection between the
segments is defined by the following continuity conditions: 7’ (Ly) = 7., (0) and

nt,(La) = 1., (0), where ) = u}, wh, ¢’ Nj, M’ wherei = a,b, and j = €1, €5, €3.
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The conditions for transverse equilibrium at the connection of the segments are
Q.. (Ly) = Q2 (0) + Q2 (0) and Q% (Ly) + Q¥ (Ls) = Qc,(0). The influence of
the interlayer slip modulus K; between the layers with the segment lengths [,
and L3, and separation length Lo, on the beam displacements and equilibrium
forces has been examined next. It is noticed that although the slip modulus has
an influence on all displacements, the interlayer uplift (Aw) and distortion (Ay),

remain unchanged for a given value of 5 under a variation of K, (Fig. 2.7a).
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FIGURE 2.7: a.) Vertical displacements for 5 = 0.5 and various K;s; b.) Inter-
layer slip for K; = 1 kN/cm? and various 3s; c.) Interlayer slip for K; = 100
kN /cm? and various Ss.

The interlayer uplift occurs only at the central segment where other than the
applied loading, w® depends on ¢’ at the contact with the outer segments, since
the segments on a single layer are rigidly connected. By expanding the expression
for the interlayer distortion as Ap = ©® — p? = 7° —w” — (42 —w?) = Q°/CY —
Q°/C% — Aw', no dependence between Ayp and K; is noticed, since shear forces
are independent of K; (see Eqs (2.22)). This means that Aw is independent of
K, and so is Ap (on the entire length of the beam). Vertical displacement along
the span has been plotted for § = 0.5 and different values of K; in Fig. 2.7a.
The interlayer slip, Au, for 3 = 0.25,0.5,0.75, and K; = 1,100 kN /cm? has been
shown in Figs. 2.7b and c. As expected, Au , increases with decreasing of K; and

increasing the separation length.

The slip modulus K; affects the distribution of the axial equilibrium forces and the
tangential contact tractions p;, which can be observed again for # = 0.25,0.5,0.75,

and K; = 1,100 kN/cm? in Figs. 2.8-2.9.
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FIGURE 2.8: Axial equilibrium forces: a.) K; = 1 kN/cm?; b.) K; = 100

kN /cm?.
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FIGURE 2.9: Tangential contact tractions: a.) K; = 1 kN/em?; b.) K; = 100
kN /cm?.

In case of K; =1 kN/cm?, the layers behave almost independently (not much
difference between the inner and the outer segments) and the variation of § has
little effect. In the latter case the slip modulus is high and the influence of 3 is
more pronounced. The shear forces are, as stated earlier, independent of K;, and so
are the normal interlayer tractions (see Eqs (2.11) and (2.9)). Their distributions

are for different values of 3 shown in Fig. 2.10.
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FIGURE 2.10: Shear forces: a.) layer a; b.) layer b; and c.) normal contact
tractions. All quantities are K; independent.

2.6.3 Comments on the boundary layer effect

In the context of composite beams with interlayer slip, the boundary layer ef-
fect appears in the case of bending due to boundary moments M, and becomes
increasingly pronounced with growing shear stiffness of the interlayer connec-
tion. When each individual layer of a two-layer beam is subjected to an end
moment (M?(0) + M®(0) = My and M*(L) + MP(L) = M,) with zero axial load
(N?(0) = N*(0) = 0 and N*(L) = N*(L) = 0), the normal forces in each layer
and the tangential tractions at the interlayer connection emerge between the beam

boundaries even though at the boundaries they do not exist.

This problem was investigated by Challamel and Girhammar [11] for a two-layer
beam with interlayer slip using the Euler-Bernoulli beam theory. In the present
work the same problem is investigated using the Timoshenko beam theory. Sub-
stituting M?® = C¢p® and M® = Chp" from (2.20) into overall equilibrium along
the beam My = M + M" — J\/’“haTJ“hb yields

h¢ 4+ hb
2

My = C§p” 4 Cho” — N, (2.29)

while substituting u* = % and u” = gL: from (2.20) into the derivative of (2.8)
1 1

and the result into into the derivative of (2.19)3; and then into the derivative of
N+ po =0 from (2.20) yields
h h?

1 1
CL/I:K a = 0 o aal - b/ ) 230
N =KW (Gt ) + e+ e (230
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Cg <pa//—/\/a‘/ h® ngob// _Nb/Lb

Likewise, substituting v* = 2 and 7* = o= from (2.20) into
2 2

(2.19), yields

C“go“” — Nwhe CbQOb// — NV ht
1 2 3 2 3 2
— 7 = + = 0. 2.31
v Cy ct (2:81)

Solving (2.29) and (2.30) for ¢ and " and substituting the result into the deriva-

tive of (2.31) we obtain the following fourth-order differential equation

d4Na dQNa
C1 drt + Co A2 + CgNa + C4M0 = 0, (232)
where
26’5}03” 1 1
_ 4 2.33
“ = e (@t a) (233)

B 2 Cs+Ch 1 1 arn (1 1
02_0§ha—0§hb{ K, +<Cs+05) {0303 crar) "

| Gy + Gy (k) } (234

4

20C5+C% [ 1 1 (h*+ hb)?
€3 = ahb b a b a b ’ (235>
Cehb — Cthe | O T € " 4(Cy + CY)
a b

~ Cght — Che

For the Euler-Bernoulli beam theory, shear moduli G* — oo and C§ = kjG'A* —
00, (i = a,b), reducing equation (2.32) to exactly the same form as given by

Challamel and Girhammar [11]:

d2Na
T apNi = Br My, (2.37)
where
5  C3 1 1 (h® + h?)?
- S K| — = T 2.38
T t@+q+4@+@)’ (2:38)

% . Kt<ha + hb)

%:@_x@+@y (2.39)

Using the model Mjg; and considering a simply supported two layer beam with
identical geometrical and material properties as in the previous exmple without

discontinuity in the interlayer connection (L; = 0, see Fig.2.11), a numerical
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analysis is performed according to Challamel and Girhammar [11].
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FIGURE 2.11: Beam model for the boundary-effect analysis

Since for the case of pure bending no transverse forces appear, the results obtained
using model Mg are exactly the same as the results proposed by Challamel and
Girhammar [11|. Following the notation due to these authors, the dimensionless

quantities are introduced

a b
i:%, andn:'//\\%:%, (2.40)
where
Ce+Ch 2M,
NG =-Nb =— |1 — 3 ;C?%(huw = —}-(;zb (2.41)
s + O+ “ieran

is the normal force associated with the full composite beam. In Fig. 2.12, the
T — n diagram is shown for various values of parameter &, which is defined as