Žigulić, Roberto

Doctoral thesis / Disertacija

2001

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Rijeka, Faculty of Engineering / Sveučilište u Rijeci, Tehnički fakultet**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:188:671453

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-02-04

Repository / Repozitorij:

Repository of the University of Rijeka Library - SVKRI Repository

PODACI O AUTORU I DOKTORSKOJ DISERTACIJI

1. AUTOR

Ime i prezime: Datum i mjesto rođenja: Naziv fakulteta, studija i godina završetka dodiplomskog studija:

Naziv fakulteta, smjera i godina završetka poslijediplomskog studija: 08.07.1966., Rijeka

Roberto Žigulić

Tehnički fakultet Sveučilišta u Rijeci, strojarstvo, 1992.

Tehnički fakultet Sveučilišta u Rijeci, strojarstvo, Mehanika strojeva i konstrukcija,1997.

Sadašnje zaposlenje:

Tehnički fakultet Sveučilišta u Rijeci

Dinamika rotora u kliznim ležajevima

str. 151, sl.103, tab.6,

2. DOKTORSKA DISERTACIJA

Naslov: Broj stranica, slika, tabela i bibliografskih podataka: Znanstveno polje i grana:

bolje i grana: Strojarstvo; op tehničke znano Red prof dr. s

Voditelj rada: Fakultet na kojem je rad objavljen:

3. OBRANA I OCJENA

Datum prijave teme: Datum predaje rada: Datum prihvaćanja ocjene rada: Sastav Povjerenstva za ocjenu:

Datum obrane: Sastav Povjerenstva za obranu:

Datum promocije:

Strojarstvo; opće strojarstvo (konstrukcije); Druge temeljne tehničke znanostite, hnička mehanika i mehanika fluida Red. prof. dr. sc. Mirko Butković, dipl. ing. Tehnički fakultet Sveučilišta u Rijeci

19.02.1999.
04.09.2001.
25.10.2001.
red. prof. dr. sc. Ivo Alfirević, dipl. ing.
red. prof. dr. sc. Mirko Butković, dipl. ing.
red. prof. dr. sc. Josip Brnić, dipl. ing.
prof. emeritus Mirko Krpan, dipl. ing.

09.11.2001. red. prof. dr. sc. Ivo Alfirević, dipl. ing. red. prof. dr. sc. Mirko Butković, dipl. ing. red. prof. dr. sc. Josip Brnić, dipl. ing. prof. emeritus Mirko Krpan, dipl. ing.

SVEUČILIŠTE U RIJECI TEHNIČKI FAKULTET

DINAMIKA ROTORA U KLIZNIM LEŽAJEVIMA

Doktorska disertacija

Roberto Žigulić

Mentor: Red. prof. dr. sc. Mirko Butković, dipl. ing.

Rijeka, 2001.

× 16.

Sveučilište u Rijeci TEHNIČKI FAKULTET - Fakultetsko vijeće – Klasa:602/04-99-01/07 Ur.br.:2170-57-43-99-09 Rijeka, 19. veljače 1999.

Fakultetsko vijeće Tehničkog fakulteta Sveučilišta u Rijeci, na 7. sjednici u šk.god. 1998./99., održanoj 19. veljače 1999. donijelo je sljedeću

ODLUKU

1.) Temeljem izvješća Stručnog povjerenstva za ocjenu podobnosti pristupnika i teme doktorske disertacije, u sastavu: red.prof.dr.sc. Mirko Butković, dipl.ing., red.prof.dr.sc. Josip Brnić, dipl.ing. i red.prof.dr.sc. Ivo Alfirević, dipl.ing. – FSB Zagreb, utvrđuje se da mr.sc. **ROBERTO ŽIGULIĆ, dipl.ing.** ispunjava uvjete članka 51. Zakona o visokim učilištima te da može izvan doktorskog studija pristupiti izradbi doktorske disertacije, naslovljene: "DINAMIKA ROTORA U KLIZNIM LEŽAJEVIMA".

2. Predloženiku se za mentora imenuje red.prof.dr.sc. Mirko Butković, dipl.ing.

Sveučilište u De MINIČKU S Prof.dr.sc. Bernard Frankbvić, dipl.ing.

L

Dostaviti:

(1) Mr.sc. Roberto Žigulić, dipl.ing.

2. Red..prof.dr.sc. Mirko Butković, dipl.ing.

3. Povjerenstvo za poslijediplomske studije i doktorate znanosti

4. Evidencija studija

5. Voditelj Opće i kadrovske službe

6. Pismohrana F.V.

Prerano preminulom ocu kao znak vječne zahvalnosti

- ----

SAŽETAK

U disertaciji je teorijski, numerički i eksperimentalno obrađen problem određivanja odziva fleksijskih vibracija linearnih i nelinearnih rotordinamičkih modela.

U teorijskom je dijelu naročita pažnja posvećena teoriji nestabilnosti kod prisilnih vibracija pri čemu su ove nestabilnosti karakterizirane nelinearnim prisilnim vibracijama. Vibracije su uobičajeno pobuđene debalansom, a nelinearnost je geometrijskog karaktera. Istovremenim vibriranjem rotora i statora dolazi do njihovog kontakta pri čemu gibanje rotora po statoru može biti okarakterizirano ili kao kotrljanje uz klizanje ili kao čisto kotrljanje ("whirl" i "whip" suhog trenja) uz divergirajuću natražnu precesiju rotora.

Numerički je model temeljen na metodi konačnih elemenata. Korištenjem Hamiltonovog principa izvedene su jednadžbe gibanja svih potrebnih konačnih elemenata za modeliranje rotordinamičkog sustava (2-D i 3-D gredni rotordinamički konačni element, kruti disk, kotrljajući i klizni ležaj, brtve). Posebnu novost predstavlja definiranje ležaja sa suhim trenjem kao konačnog elementa. Na osnovi je spomenutog numeričkog algoritma napisan programski paket *ROTOR* s kojim je moguće rješavati linearne i nelinearne rotordinamičke probleme u stacionarnim i nestacionarnim uvjetima a specijaliziran je za rotore koji se gibaju u ležajevima sa suhim trenjem. Programski paket je testiran na šest primjera.

Eksperimentalni model je načinjen s ciljem usporedbe s rezultatima dobivenim numeričkim putem. Rezultati mjerenja, dobiveni pri zaustavljanju rotora, su dani u obliku amplituda vibracijskih pomaka, kaskadnih dijagrama i orbita.

SUMMARY

In this thesis the problem of determination of the response for the linear and nonlinear flexural vibrations of the rotordynamic models is elaborated theoretically, numerically and experimentally.

In the theoretical part the particular attention is dedicated to the theory of instability of a forced vibrations. The vibrations are usually excited by the unbalance and nonlinearity has geometric nature. The simultaneous vibration of the rotor and stator results with contact. The motion of the rotor along the stator can be characterized either as a rolling with slip or a rolling without slip (dry friction "whirl" and "whip") with the increasing backward precession of the rotor.

The numerical model is based on the finite elements method. By using the Hamilton's principle the equations of motion of all finite elements necessary for the modeling of the rotordynamic systems (2-D and 3-D beam rotordynamic finite element, rigid disk, roller and journal bearing, seals) are derived. The particular novelty represents the definition of dry friction bearing as a finite element. On the basis of the mentioned numerical algorithm the program package *ROTOR* is written. This program can be used for solving a linear and nonlinear rotordynamic problems in stationary and nonstationary states and it is specialized for the rotors rotating in the dry friction bearings. The program package is tested on the six examples.

Experimental model is made for the purpose of comparison with the numerically obtained results. Measurements results obtained during the run down of the rotor are given in the form of vibrational displacements amplitudes, cascade diagrams and orbits.

Predgovor

Doktorska disertacija Dinamika rotora u kliznim ležajevima izrađena je u okviru znanstvenoistraživačkog projekta br.069013 pod nazivom Mehanička sigurnost strojeva, Ministarstva znanosti i tehnologije Republike Hrvatske, glavnog istraživača red.prof.dr. Mirka Butkovića, dipl. ing. Cilj izrade disertacije ujedno je i jedan od glavnih ciljeva ovog znanstveno-istraživačkog projekta a definiran je kao stvaranje numeričkog modela, temeljenog na metodi konačnih elemenata, s kojim bi bilo moguće vršiti analizu dinamike kompletnog rotordinamičkog sustava te proširivanje postojećih teorijskih spoznaja kao i stvaranje numeričkog modela zapinjanja rotora o ležaj ili kućište.

Disertacija je podijeljena u devet poglavlja, pri čemu je prvo poglavlje uvodno, a posljednje poglavlje predstavlja zaključna razmatranja.

U drugom poglavlju pod nazivom *Osnovni pojmovi dinamike rotora* na primjerima su osnovnih modela (Jeffcottov model, Stodola-Greenov model, Jeffcottov model s asimetrično postavljenim diskom) definirani osnovni teorijski pojmovi vezani uz vibracijsko ponašanje takvih modela. Prvi se dio ovog poglavlja odnosi na linearni model, dok je u drugom dijelu više pažnje posvećeno nelinearnostima geometrijskog tipa koje se javljaju u rotordinamičkim modelima. Izvedena su dva nelinearna modela zapinjanja i to model temeljen na teoriji kolizije i model temeljen na teoriji kontaktne sile. Nadalje je prikazano određivanje normalne sile dodira i to u prvom slučaju kod određivanja stacionarnog odziva a u drugom slučaju kod određivanja nestacionarnog odziva. Na kraju ovog poglavlja opisani su mehanizmi "whirla" i "whipa" suhog trenja koji se odlikuju čistim kotrljanjem bez klizanja rotora po vibrirajućem statoru uz divergirajuću natražnu precesiju.

Treće poglavlje disertacije pod naslovom *Dinamika sustava materijalnih čestica i krutog tijela* temeljeno je na postavkama Lagrangeove dinamike. Na samom početku su definirani pojmovi neslobodnog gibanja sustava materijalnih čestica te poopćenih pomaka i poopćenih sila. Nakon toga definirani su i Hamiltonov princip i Lagrangeove jednadžbe za konzervativne sustave. Nakon uvođenja pojmova nekonzervativnog vanjskog opterećenja i unutarnjih disipacijskih sila, pri čemu su prikazani i uspoređeni pojedini poznati mehanizmi disipacije energije (viskozno prigušenje, fluidno prigušenje, suho trenje, strukturno prigušenje) definirane su i Lagrangeove jednadžbe gibanja za nekonzervativne sustave materijalnih čestica. Te su jednadžbe gibanja iskorištene za definiranje dinamike ležaja s suhim trenjem a također su izvedene jednadžbe gibanja i za pojedine dijelove rotordinamičkog sustava koji se modeliraju kao sustavi materijalnih čestica ili kao kruta tijela.

Poglavlje četiri pod nazivom Jednadžbe elastomehanike raspodijeljenih sustava na samom početku se bavi kinematičkim opisom dinamičkog ponašanja raspodijeljenih sustava te definicijom Green-Lagrangeovog tenzora deformacije. Nakon što je izvedena veza naprezanja i deformacije tj. drugog Piola-Kirchoffovog tenzora i Green-Lagrangeovog tenzora deformacije primjenom Hamiltonovog principa za raspodijeljene sustave izvedene su jednadžbe gibanja konzervativnog raspodijeljenog sustava a specijalno za jednodimenzionalne raspodijeljene sustave. Nakon toga dobiveni su energetski izrazi i jednadžbe gibanja za poprečne vibracije dvaju tipova greda i to Bernoulli-Eulerov i Timoshenkov model grede. Osim toga prikazan je i način određivanja vlastitih frekvencija i formi vibriranja kao i odziva prisilnih vibracija jednodimenzionalnih raspodijeljenih sustava.

Peto poglavlje nosi naziv *Metode matematičkog modeliranja u rotordinamici* i svrstava sve modele rotordinamičkih sustava u jedan od četiri tipova. Diskretni model, prijenosno matrični model i fizikalno modalni model opisani su samo u osnovnim crtama. Temeljitije je opisan konačno elementni model budući je jedan od osnovnih ciljeva rada uvođenje metode konačnih elemenata u modeliranje rotordinamičkih sustava. Razvijena je teorija ravninskog i prostornog rotordinamičkog grednog

konačnog elementa uz mogućnost odabira grednog konačnog elementa bez smičnih deformacija (Bernoulli-Eulerova greda) ili sa smičnim deformacijama (Timoshenkova greda). U okviru svakog grednog konačnog elementa postoji mogućnost uključivanja unutarnjeg prigušenja u model. Ostali elementi konačno elementnog modela su kruti disk kao dominantni unositelj giroskopskog efekta u model te ležajevi i brtve. Nadalje su prikazane jednadžbe gibanja za kuglični ležaj te matematički model za rješavanje bezdimenzijskog polja tlaka uljnog filma kod kliznih ležajeva temeljen na Reynoldsovoj jednadžbi. Integriranjem iz polja tlakova dobivaju se bezdimenzijske krutosti i prigušenja uljnog filma. Slijede jednadžbe gibanja brtve kao konačnog elementa te ležaja s suhim trenjem kao konačnog elementa što predstavlja specifičnost ovoga rada. Asembliranje jednadžbi gibanja konačnih elemenata u globalne jednadžbe gibanja sustava predstavlja također vrlo bitan dio potpoglavlja o konačno elementnom modelu budući opisuje rad sa substrukturama te prednosti i nedostatke takvog pristupa.

Šesto poglavlje pod naslovom Numeričke procedure za rješavanje rotordinamičkih problema teorijski objašnjava funkcioniranje procedura za određivanje vlastitih frekvencija i vlastitih formi vibriranja, određivanje stacionarnog odziva rotora na harmonijsku uzbudu, određivanje tranzijentnog odziva linearnog modela rotora (Newmarkova metoda) te određivanje nelinearnog odziva (Newmarkova ili Hilbert-Hughes-Taylorova α metoda uz provođenje Newton-Raphsonovog postupka). Za svaku od numeričkih metoda navedeni su kriteriji konvergencije rješenja.

Dobro poznavanje teorije numeričkih metoda, opisane u šestom poglavlju, temelj je uspješnosti pisanja programskih rješenja kao npr. *Programskog paketa ROTOR* opisanog u sedmom poglavlju. *Programski paket ROTOR* se sastoji iz programa *LINEAR*, namijenjenog za rješavanje problema linearne rotordinamike, te programa *NELINEAR*, namijenjenog za rješavanje specifičnih problema nelinearne rotordinamike vezanih uz geometrijske nelinearnosti te specijaliziranog za rješavanje problema nelinearnog gibanja rotora u ležajevima sa suhim trenjem. Nakon što je prikazana struktura programskih rješenja i opisano funkcioniranje oba programa programski paket je testiran na šest test primjera. Dobiveni rezultati su uspoređeni s poznatim, u literaturi iznešenim, teorijskim, numeričkim i eksperimentalnim rezultatima.

Glavna provjera numeričkih, putem programskog paketa rotor dobivenih, rezultata provedena je u poglavlju osam koje nosi naziv *Mjerenje vibracija rotora i usporedba s rezultatima proračuna.* Eksperimentalni dio disertacije proveden je na preuređenom uređaju za balansiranje sa ležajevima s suhim trenjem uz korištenje Schenkove mjerne opreme. Rotor je preko mekog kardana vezan na tiristorski upravljan elektromotor kako bi se izbjeglo unošenje u model vibracija uzrokovanih pogonskom neujednačenošću. Rezultati mjerenja dani su u obliku amplituda horizontalnih i vertikalnih pomaka, kaskadnih dijagrama i orbita pri zaustavljanju rotora te su uspoređeni s numeričkim rezultatima dobivenim programskim paketom *ROTOR*.

Ovom prilikom autor izražava zahvalnost svome mentoru red. prof. dr. Mirku Butkoviću, dipl. ing. na svesrdnoj pomoći pruženoj tijekom izrade ove disertacije. Izuzetnu zahvalu autor upućuje i red. prof. dr. sc. Ivi Alfireviću, dipl. ing. sa Fakulteta strojarstva i brodogradnje u Zagrebu te red. prof. dr. Josipu Brniću i prof. emeritusu Mirku Krpanu, na uloženom trudu pri pregledu disertacije. Asistentu Sanjinu Brautu, dipl. ing. autor također svesrdno zahvaljuje na korisnim savjetima tijekom izrade programskog paketa *ROTOR* te na velikoj pomoći pri provođenju eksperimentalnog dijela kao i pri opremanju disertacije.

Na kraju autor izražava posebnu zahvalnost svojoj obitelji na trajnoj podršci, razumijevanju i strpljenju.

Sadržaj

3

1. Uv	od
	1.1. Definiranje problema
	1.2. Ocjena dosadašnjih istraživanja
	1.3. Cilj i svrha istraživanja
2. Osi	ovni pojmovi dinamike rotora
	2.1. Model rotora sa simetrično postavljenim diskom (Jeffcottov model)
	2.1.1. Utjecaj težine na vibracije Jeffcottovog rotora
	2.2. Giroskopski efekt (Stodola-Greenov model)
	2.2.1. Utjecaj momenta inercije masa na vlastite frekvencije u stanju
	mirovanja
	2.2.2. Utjecaj giroskopskog momenta na vlastite frekvencije
	2.2.3. Stacionarni odziv Stodola-Greenovog modela rotora
	2.3. Utjecaj prigušenja na stabilnost i odziv rotora
	2.4. Utjecaj ležaja i njihovih oslonaca na stabilnost i odziv rotora
	2.4.1. Ortotropna krutost oslonca ležaja
	2.4.2. Prigušenje u osloncima ležaja
	2.5. Ubrzavanje rotora kroz kritičnu brzinu.
	2.6. Nelinearni modeli dinamike rotora
	2.6.1. Uvod u teoriju nelinearnosti u vibracijskom sustavu
	2.6.1.1. Karakteristike nelinearnih vibracija
	2.6.2. Nelinearni model Jeffcottov rotora s zapinjanjem o stator
	2.6.2.1. Nelinearni model zapinjanja temeljen na teoriji kolizije
	2.6.2.2. Nelinearni model zapinjanja temeljen na teoriji kontaktne sile.
	2.6.2.3. Normalna sila dodira kod određivanja stacionarnog odziva
	2.6.2.4. Normalna sila dodira kod određivanja tranzijentnog odziva
	2.6.2.5."Whip" i "whirl" suhog trenja
.Dina	mika sustava materijalnih čestica i krutog tijela 3.1. Neslobodno gibanje sustava materijalnih čestica
	3.2. Pojam poopćenih pomaka i poopćenih sila
	3.3. Hamiltonov princip za konzervativne sustave i Lagrangeove jednadžbe
	3.3.1. Struktura kinetičke energije
	3.3.2. Konzervacija energije u sustavima sa skleronomnim ograničenjima.
	3.3.3. Klasifikacija poopćenih sila
	3.3.3.1. Elastične unutarnje sile i konzervativne vaniske sile
	3.3.3.2. Poopćene sile kod vanjskog nekonzervativnog opterećenja
	3.3.3.3. Unutarnje disipacijske sile
	3.3.3.1. Energija disipacije viskoznog prigušenja
	3.3.3.2. Energija disipacije fluidnog prigušenia
	3.3.3.3. Energija disipacije suhog trenia
	3.3.3.4. Strukturno prigušenje
	3.4. Lagrangeove jednadžbe u općenitom slučaju
	3.4.1. Dinamika ležaja s suhim trenjem.
	3.5. Dinamika krutog tijela i kinetička energija krutog diska

11

III

Dinamina rotora a milentin recarcertina	Dinamika rotora	u kliznim	ležajevima
---	-----------------	-----------	------------

4. Jednadžbe elastomehanike raspodijeljenih sustava	40
4 1. Kinematički opis dinamičkog ponašanja raspodijeljenih sustava	40
4.2. Green-Lagrangeov tenzor deformacije	50
4.3. Veza naprezanie – deformacija	51
4.4. Hamiltonov princip za raspodijeljene sustave	53
4.5. Jednodimenzijski raspodijeljeni sustavi	55
4.5.1. Poprečne vibracije greda bez smičnih deformacija	57
4.5.1.1. Energetski izrazi i jednadžbe vibanja kod Bernoulli-	51
Eulerove grede	58
4.5.1.2 Jednadžba slobodnih vibracija Bernoulli-Eulerove grede	50
4.5.1.3. Vlastite frekvencije i vlastiti oblici vibriranja	22
Bernoulli-Eulerove grede	50
4.5.1.4. Prisilne vibracije raspodijeljenih sustava	61
4.5.2 Poprečne vibracije greda uključujući smične deformacije	62
4.5.2.1 Energetski izrazi i jednadžbe gibanja kod Timoshenkove	02
arede	62
5. Matada matamatičkog modelizanje u zatardinemiaj	02
5. Metode matematickog modenranja u rotorumamici	05
5.1. Diskretni model	65
5.2. Prijenosno – matrichi model	65
5.2.2. Tinggi guilegenerit entring	66
5.2.2. L Briterene metrice to the	00
5.2.2.2. Prijenosna matrice točke	00
5.2.2.2. Prijenosna matrica polja	6/
5.2.2.3 Prijenosna matrica sustava	68
5.2.5. Procedure rjesavanja vioracijskih problema rotordinamike	10
pomocu metode prijenosnih matrica	68
5.2.3.1. Prigusene brzine precesije i precesijske forme vibriranja	68
5.2.3.2. Neprigusene kritične brzine i pripadne forme vibriranja	69
5.2.3.3. Odzīv debalansa	69
5.3. Konačno elementni model.	70
5.3.1. Ravninski rotordinamički gredni konačni element	71
5.3.2. Prostorni rotordinamički gredni konačni element	75
5.3.3. Kruti disk kao konačni element	80
5.3.4. Ležajevi i brtve u rotodinamici	81
5.3.4.1. Kuglični ležaj kao konačni element	83
5.3.4.2. Klizni ležajevi kao konačni elementi	84
5.3.4.3. Brtva kao konačni element	88
5.3.4.4. Ležaj sa suhim trenjem kao konačni element	89
5.3.5. Asembliranje jednadžbi gibanja konačnih elemenata u	4.4
globalne jednadžbe gibanja sustava	90
5.4. Fizikalno-modalni model	92
5.4.1. Statička kondenzacija	93
5.4.1.1. Dinamička kondenzacija	94
5.4.2. Modalna kondenzacija	94
5.4.3. Mješovita kondenzacija	94

R Žigulić-Doktorska disertacija	V
6. Numeričke procedure za rješavanje rotordinamičkih problema	95
6.1. Procedura za određivanje vlastitih vrijednosti i oblika vibriranja	95
6.2. Procedura za određivanje stacionarnog odziva rotora na harmonijsku	
uzbudnu silu	96
6.3. Procedura za određivanje tranzijentnog odziva linearnog modela rotora	98
6.3.1. Stabilnost integracijske metode	101
6.4. Procedure za određivanje nelinearnog odziva	105
6.4.1. Hilber-Hugnes-Taylorova (HHT) α metoda	100
7. Programski paket ROTOR	107
7.1. Program LINEAR	107
7.2. Program NELINEAR	110
7.3. Test primjeri	110
7.3.1. Primjer I	111
7.3.2. Primjer 2	113
7.3.3. Primjer 3	114
7.3.4. Primjer 4	114
7.3.5. Primjer 5	115
7.3.6. Primjer 6	119
8. Mjerenje vibracija rotora i usporedba s rezultatima proračuna	125
9. Zaključak	133
Popis literature	136
Popis oznaka i simbola	140
Popis slika	148
Popis tablica	151

1. Uvod

1.1. Definiranje problema

Korisnikovi zahtjevi za ispravnim funkcioniranjem uredaja moraju neizbježno predstavljati primarni interes njihovim konstruktorima. Ali, kao što je to slučaj najviše kod energetskih strojeva, gdje konstrukcija uključuje i rotirajuće elemente, konstruktor mora imati na umu da su trajnost, pouzdanost te ekološka prihvatljivost opreme za korisnika i okolinu najuže povezani s njezinim vibracijskim karakteristikama. U ranijoj fazi razvoja energetskih strojeva, kada optimizirajući zahtjevi proizvoda (manje težine zbog ušteda u materijalu, veće brzine zbog veće snage, manje zračnosti zbog veće iskoristivosti, duži vijek trajanja, veća pouzdanost) još nisu tjerali konstruktore da u proračune ulaze s minimalnim koeficijentima sigurnosti, bilo je možda dovoljno da se pridaje samo površna pažnja vibracijskom konstruiranju te da se ovisno o iskustvu konstruktora, rješavanjem problema od slučaja do slučaja razvije dizajn kod kojeg se neće pojavljivati bitniji vibracijski problemi. Međutim s neizbježnim porastom korisničkih zahtjeva dolazi i do potrebe proširivanja temeljnih znanja na području teorije vibracija te primjene tih znanja u opisivanju što je moguće realističnijih numeričkih modela realnih dinamičkih konstrukcija. Fundamentalna istraživanja vrše se također i na području numeričkih metoda za približno rješavanje kompleksnih matematičkih problema, a korištenje snažnih računala dovodi konačno do krajnjeg cilja a to je usavršavanje kao i konačno definiranje budućeg proizvoda još na nivou modela.

Zbog rasporeda krutosti i masa rotordinamičkih sustava njihove fleksijske vibracije zauzimaju dominantnu poziciju u odnosu na aksijalne i torzijske vibracije. Pritom se nameće potreba istraživanja fenomena i razvijanja numeričkog modela fleksijskih prisilnih vibracija (linearnih) rotora i nestabilnosti kod samouzbudnih (nelinearnih) fleksijskih vibracija gdje spada "whirl" i "whip" uljnog filma. Navedeni fenomeni teoretski su relativno dobro istraženi ali se numerički modeli za njihovo opisivanje neprestano razvijaju. Negdje između ta dva područja javlja se kod fleksijskih vibracija i područje nestabilnosti kod prisilnih vibracija. Ove nestabilnosti su karakterizirane nelinearnim prisilnim vibracijama pri frekvenciji jednakoj frekvenciji rotorove rotacije pri čemu su vibracije pobuđene debalansom. Uobičajeno se radi o tzv. bistabilnim vibracijama gdje su zone stabilnog odziva uslijed debalansa separirane područjem nestabilnog stanja gdje nelinearnosti bitno povećavaju (smanjuju) krutost rotordinamičkog sustava što dovodi do pojačanja i bitne deformacije rezonantne krivulje. Tipičan predstavnik nestabilnosti kod prisilnih vibracija je precesija rotora u ležajevima s suhim trenjem a efekt je nešto slabije teorijski istražen budući da tek u posljednjem desetljeću prihvatni ležajevi, kao sastavni dio magnetskih ležajeva, ulaze u primjenu. Efekt precesije u ležajevima s suhim trenjem sa ili bez klizanja razvijan je na Jeffcottovom rotoru dok radovi vezani uz složenije rotore gotovo da i ne postoje.

1.2. Ocjena dosadašnjih istraživanja

Najveći broj dosadašnjih istraživanja vezan je uz vrlo jednostavne modele [1-5] pri čemu je razmatran utjecaj pojedinih parametara rotordinamičkog sustava na stabilnost i odziv rotora u stacionarnom stanju i pri tranzijentnim pojavama [6-17]. Predmet istraživanja su i nelinearne vibracije [18-23] povezane s fenomenom kontinuiranog ili djelomičnog kontakta rotora i statora [24-39] što nastaje sasvim slučajno (gubitak tlaka ulja kod kliznih ležajeva) ili planirano (gibanje u prihvatnom

. .

ležaju kod nestanka struje na magnetnim ležajevima, gibanje u ležajevima s suhim trenjem). Osim kotrljanja uz klizanje kao najčešćeg oblika gibanja pri kontaktu rotora i statora (ranije spomenute nestabilnosti kod prisilnih vibracija) ispituju se i specifični oblici gibanja kao što su npr. "whirl" i "whip"suhog trenja [40-45]. Za egzaktno određivanje vibracijskih karakteristika rotordinamičkih sustava stoji na raspolaganju matematički aparat koji se sastoji od dinamike sustava materijalnih čestica i krutog tijela [46-59] upotpunjen elastomehanikom raspodijeljenih sustava [60-69]. Kako su analitička rješenja za vibracijske probleme rotordinamičkih sustava moguća samo za raspodijeljene sustave jednostavnijih geometrija, opterečene jednostavnijim oblicima opterećenja itd. to je potrebno koristiti neke od aproksimativnih metoda što daju približna rješenja. Najčešće se koriste diskretni modeli [1-5] koji zbog svoje jednostavnosti ipak ne mogu, kao što je to objašnjeno u [70] kompletno objasniti pojedine vibracijske fenomene za vrijeme kontakta rotora i statora. Jednostavnošću korištenja se kod linearnih problema ističe i metoda prijenosnih matrica [71-73] dok je najkompletnija metoda konačnih elemenata [74-75] temeljena na Rayleight-Ritzovoj metodi aproksimacije pomaka. Konačno elementni modeli Bernoulli-Eulerove i Timoshenkove grede proširuju se raspodijeljenim opterećenjem debalansa te utjecajem unutarnjeg prigušenja [76-79]. Također se radi na razvoju teorije i ostalih konačnih elemenata kao npr. krutog diska, ležajeva (kuglični ležaj, klizni ležaj) i brtvi [80-93]. Fizikalno-modalni pristup koji se temelji na redukciji broja stupnjeva slobode gibanja naročito je pogodan za veće dinamičke sustave, s većim brojem stupnjeva slobode gibanja, razvija se u pravcu statičke, dinamičke, modalne i mješovite kondenzacije [95-96]. Numeričke procedure za rješavanje rotordinamičkih problema (vlastite vrijednosti, stacionarni odziv, tranzijentni odziv te nelinearni odziv) obrađene su u [97-103].

Kao što je to ranije spomenuto fleksijski linearni problemi prisilnih vibracija rotordinamičkih sustava jako su dobro istraženi a metodu konačnih elemenata za rješavanje takvih problema su prilagodili Nelson i Mc Vaugh (1976.) [77] te Gasch (1976.) [78]. Nakon toga Zorzi i Nelson (1977.) [79] prilagođavaju teoriji konačnih elemenata i unutarnje prigušenje kao potencijalno vrlo opasan izvor nestabilnog gibanja rotora.

Nešto kasnije rezultati dobiveni na linearnim modelima više nisu mogli zadovoljiti stručnjake koji su krenuli pravcem istraživanja nelinearnih modela. Na području nelinearnih modela u kugličnim ležajevima najpoznatiji radovi su dva rada Lima i Singha iz (1990.) [81] i [82], te Muehnlera i Dietla iz (1997.) [83] dok su se definiranjem polja tlakova u uljnom filmu te krutostima i prigušenjima uljnog filma bavili Schaffrath (1969) [89], Klump (1975) [86] i Someya (1989) [85]. Problemima inkorporiranja nelinearnosti kliznih ležajeva u cjelokupne rotordinamičke modele bavili su se Nordmann i Weber (1990) [93], Nordmann *et al.* (1990) [94] te Weber (1993) [84].

Najmanji je napredak izvršen na području modeliranja gibanja rotora u ležajevima s suhim trenjem tj. na području kontakta između rotora i statora, budući su još donedavno takvi ležajevi bili izvan upotrebe zbog dominacije kliznih i kotrljajućih ležajeva. Teorijski problem su detaljnije opisali Grissom (1985) [25], Szczygielski (1986) [26], Childs (1993) [30] međutim većina radova napravljena je na vrlo jednostavnim rotordinamičkim modelima [1-5] kao što su npr. radovi Yanabea et al. (1994) [27], Markerta i Wegenera (1995) [32], Lawena i Flowersa (1999) [36] te Simona i Brommundta (1997) [38]. To također vrijedi i za radove vezane uz "whirl" i "whip" suhog trenja Ehrich i O'Connor (1967) [42], Crandall (1990) [41] te Lingener (1990) [43]. Također jako mali broj, od ukupnog broja radova iz tog područja ima eksperimentalnu verifikaciju rezultata, kao npr. Abraham et al. (1988) [35] gdje ovaj rad predstavlja eksperimentalnu verifikaciju rezultata rada Markerta i Wegenera (1995) [32], Yanabe et al. (1995) [39] te Lingener (1990) [43]. Broj radova vezanih za ovu problematiku, koji su temeljeni na metodi konačnih elemenata, također je izuzetno malen.

1.2. Cilj i svrha istraživanja

Osnovni je cilj ovog istraživanja bio stvaranje efikasnog i pouzdanog numeričkog modela, temeljenog na metodi konačnih elemenata, s kojim bi bilo moguće vršiti analizu dinamike rotordinamičkog sustava i to neovisno o tipu rotordinamičke konfiguracije, uz standardne elemente rotordinamičkog sustava (rotorska osovina, diskovi, ležajevi, brtve, kućište), te proširivanje postojećih teorijskih spoznaja kao i stvaranje numeričkog modela zapinjanja rotora o ležaj ili kućište uz eksperimentalnu verifikaciju rezultata.

Metoda konačnih elemenata je odabrana zbog njezine jednostavnosti i mogućnosti matematičkog opisivanja cjelokupne rotordinamičke strukture. Zajedno s Hilbert-Hughes-Taylorovom integracijskom shemom uz provođenje Newton-Raphsonovog postupka ona predstavlja pouzdani aparat za uvođenje geometrijskih nelinearnosti u numerički model te računanje njegovog odziva. Iako se u rotordinamici pojavljuju, ova disertacija nije se bavila nelinearnostima materijalnog tipa a isto tako nije se dublje bavila područjem tzv. nestabilnog debalansa koji se ogleda u Newkirkovom efektu i spiralnim vibracijama temeljenim na prijelazu topline između rotora i statora.

Rezultati istraživanja ponuđenim numeričkim modelima za analizu dinamike rotordinamičkih sustava i za rješavanje problema zapinjanja rotor-kućište i rotor-ležaj omogućuju dobro opisivanje ponašanja rotorskog sustava u navedenim specifičnim uvjetima. U tom smislu predstavljat će pouzdan alat u cilju analize kompletnog rotordinamičkog sustava pri njegovom koncipiranju i konstrukciji.

2

2. Osnovni pojmovi dinamike rotora

2.1. Model rotora s simetrično postavljenim diskom (Jeffcottov model)

Jeffcottov model fleksibilnog rotora [1] kakav je prikazan na slici 2.1 sastoji se od ravnog diska poduprtog osovinom bez mase oslonjenom na krutim ležajevima bez trenja. U Evropi se ovaj rotor još naziva i De Lavalovim rotorom budući sliči rotoru jednostupanjske parne turbine koji je prvi konstruirao francuski izumitelj Carl De Laval). Uz definiranje gibanja ovakvog rotora vezana su dva koordinatna sustava i to nepomični koordinatni sustav X-Y-Z, pri čemu je os Z uzdužna os osovine te pomični koordinatni sustav x-y-z vezan je za disk, čija os z predstavlja os rotacije rotora. Ishodište pomičnog koordinatnog sustava u odnosu na nepomični koordinatni sustav definirano je vektorom $\{R\}$, čija se komponenta u smjeru uzdužne osi osovine R_2 , zbog zanemarivanja aksijalnih vibracija rotora u proračunima, uobičajeno zanemaruje. Središte masa diska ne leži na osi rotora, već je njegov položaj u odnosu na pomični koordinati sustav dan vektorom $\{a\}$. Rotacija pomičnog prema

Sl. 2.1 Jeffcottov model fleksibilnog rotora

nepomičnom koordinatnom sustavu određena je kutom \mathcal{P} . Za sustav prikazan na slici 2.1. vrijede sljedeće jednadžbe gibanja u nepomičnom koordinatnom sustavu:

$$\begin{split} m\ddot{R}_{x} + kR_{y} &= f_{x} + ma_{y}\ddot{\Phi}^{2} + ma_{y}\ddot{\Phi} \\ m\ddot{R}_{y} + kR_{y} &= f_{y} + ma_{y}\dot{\Phi}^{2} - ma_{x}\ddot{\Phi} \\ J_{z}\ddot{\Phi} &= M_{z} + ma_{y}\ddot{R}_{x} - ma_{x}\ddot{R}_{y} \end{split}$$

$$\begin{aligned} -2.1) \\ \end{array}$$

gdje je veza između projekcija vektora središta masa diska na osi korištenih koordinatnih sustava:

$$a_{\chi} = a_{\chi} \cos \Phi - a_{\chi} \sin \Phi$$

$$a_{\chi} = a_{\chi} \sin \Phi + a_{\chi} \cos \Phi$$
(2.2)

U prethodnim su izrazima korištene sljedeće oznake:

k - krutost osovine, m - masa diska (rotora),

 J_z - maseni moment inercije oko osi z, f_V, f_J - komponente vanjske sile,

 M_z - komponenta vektora vanjskog momenta oko osi z.

Jednadžbe 2.1 pokazuju da se poprečno gibanje rotora (određeno s R_X i R_Y) može uzbuditi komponentama f_X i f_Y vanjske sile, ali je uobičajeni izvor uzbude debalans (vektor $\{a\}$). Za konstantnu brzinu vrtnje, $\vec{\Phi} = 0, \vec{\Phi} = \Omega, \Phi = \Omega t$, dimenzija ovih jednadžbi može se smanjiti uvođenjem kompleksnih varijabli:

-	CT 1	11/ 10			
К.	/1011	1C-10	ktorska	disert	acut
•	LIGH	10 00	REOI DIGG	CITO OI L	uciju

$$\{R\} = R_X + jR_Y,$$

$$\{A\} = a_X + ja_Y,$$

$$\{a\} = a_x + ja_y$$

$$(2.3)$$

te za problem stacionarnih vibracija uslijed debalansa, u odsutnosti vanjskih sila, slijedi:

$$\{\ddot{R}\} + \omega^2 \{R\} = \Omega^2 \{a\} e^{j\Omega'} = \Omega^2 \{A\}$$
(2.4)

pri čemu je vlastita frekvencija rotora definirana izrazom:

$$\omega = \sqrt{\frac{k}{m}}$$
(2.5)

Stacionarno rješenje za $\Omega \neq \omega$ glasi:

$$R\} = B(\Omega)\{a\}e^{\beta\Omega} = B(\Omega)\{A\}$$
(2.6)

gdje je

$$B(\Omega) = \frac{\Omega^2}{\omega^2 - \Omega^2} = \frac{1}{\left(\frac{\omega}{\Omega}\right)^2 - 1}$$
(2.7)

Za $\Omega = \omega$ slijedi stacionarno rješenje:

$$\{R\} = \frac{t\omega}{2} \{a\} e^{i\left[\frac{\alpha_{l-\pi}}{2}\right]} = \frac{t\omega}{2} \{A\} e^{-\frac{i\pi}{2}}$$
(2.8)

Ovi izrazi pokazuju da su vektori pomaka $\{R\}$ i debalansa $\{a\}$ u fazi za brzinu vrtnje Ω znatno manju od vlastite frekvencije ω . Za Ω puno veći od ω , isti su fazno pomaknuti za 180°. Kada je $\Omega = \omega$, $\{R\}$ raste linearno s vremenom, a pomaknut je 90° u odnosu na {a}. Slika 2.2 prikazuje ova tri uvjeta.

Prethodni rezultati pokazuju da je gibanje rotora harmoničko gledano sa strane, odnosno kružna orbita kada se gleda aksijalno. Frekvencija gibanja se podudara s brzinom vrtnje Ω i naziva se sinhronom. Povećavanjem brzine, u nekom će se trenutku postići brzina kod koje će se amplituda gibanja rotora linearno povećavati u vremenu, a naziva se kritična brzina. Stacionarni odziv rotora iznad ove brzine također je sinhroni. Kod Jeffcottovog modela pojam kritične brzine se podudara s pojmom vlastita frekvencija, ali općenito to nije tako.

Ako se uzme u obzir i prigušenje rotora (budući je kod Jeffcottovog modela jedini izvor vanjskog prigušenja okolni zrak koji djeluje na disk [2] što može biti modelirano viskoznim tipom prigušivača), sila uslíjed vanjskog viskoznog prigušenja bit će proporcionalna brzini ali suprotnog smjera i moguće ju je izraziti kao:

$$\{F_{c}\} = -c_{v}\left(\dot{R}_{x} + j\dot{R}_{y}\right) = -c_{v}\left\{\dot{R}\right\}$$
(2.9)

7

Izrazi (2.1) mogu se, za slučaj prigušenih prisilnih vibracija rotora, potpunije pisati kao:

$$\begin{split} m\ddot{R}_{\chi} + c_{\chi}\dot{R}_{\chi} + kR_{\chi} &= f_{\chi} + ma_{\chi}\dot{\Phi}^{2} + ma_{\gamma}\dot{\Phi} \\ m\ddot{R}_{\gamma} + c_{\chi}\dot{R}_{\gamma} + kR_{\gamma} &= f_{\gamma} + ma_{\gamma}\dot{\Phi}^{2} - ma_{\chi}\ddot{\Phi} \\ J_{\chi}\ddot{\Phi} &= M_{\chi} + ma_{\chi}\ddot{R}_{\chi} - ma_{\chi}\ddot{R}_{\chi} \end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

Za konstantnu brzinu vrtnje, adekvatno izrazu (2.4) slijedi:

$$\{\ddot{R}\} + 2\zeta_{\nu}\omega\{\dot{R}\} + \omega^{2}\{R\} = \Omega^{2}\{a\}e^{j\Omega'} = \Omega^{2}\{A\}$$
(2.11)

gdje je omjer prigušenja ζ_v definiran kao:

$$=\frac{c_{\nu}}{2m\omega} \tag{2.12}$$

Stacionarno je rješenje sada:

uz

$$\{R\} = C(\Omega)\{a\}e^{j\Omega i} = [C(\Omega)]\{A\}e^{j\psi}$$
(2.13)

$$|C(\Omega)| = \frac{\Omega^2}{\sqrt{(\omega^2 - \Omega^2)^2 + (2\zeta_e \omega \Omega)^2}}$$

$$\tan \psi = -\frac{2\zeta_e \omega \Omega}{\omega^2 - \Omega^2}$$
(2.14)

I u ovom je slučaju vektor pomaka u fazi s vektorom debalansa pri malim brzinama vrtnje ($\Omega \omega \ll 1$), pomaknut za 180° pri $\Omega/\omega >>1$, te za 90° kod neprigušene kritične brzine $\Omega=\omega$. Usporedbom izraza (2.7) i (2.14) vidi se da vanjsko prigušenje ograničava amplitudu gibanja rotora kod kritične brzine. Rješenje homogene verzije jednadžbe (2.11) može se pisati u obliku:

$$\{R_{ij}\} = A_1 e^{\omega \left(-\zeta_{v} + j\sqrt{1-\zeta_{v}^{2}}\right)'} + A_2 e^{\omega \left(-\zeta_{v} - j\sqrt{1-\zeta_{v}^{2}}\right)'}$$
(2.15)

a sastoji se od dvije prigušene precesijske orbite zajedničkog perioda:

$$T = \frac{2\pi}{\omega\sqrt{1-\zeta_{s}^{2}}}$$
(2.16)

Precesijska rotacija prvog dijela rješenja istog je smjera kao i rotacija rotora (napredna precesija), dok je ona drugog djela suprotna (ntražna precesija). Matematički gledano, Jeffcottov model ima

konjugirano-kompleksne korijene u točkama $-\zeta_v \omega \pm j\omega \sqrt{1-\zeta_v^2}$, odnosno obje kritične brzine, napredna i natražnene precesije, pri $\Omega = \omega \sqrt{1-\zeta_v^2}$.

Što se tiče stacionarnih vibracija, iz jednadžbe (2.13), slijedi međutim da se debalansom može uzbuditi jedino progresivna precesija. Stacionarna rješenja jednadžbi (2.6) i (2.13) izričito zahtjevaju konstantnu brzinu vrtnje ($\ddot{\Phi} = 0, \dot{\Phi} = \Omega$). Prema zadnjem članu izraza 2.1, ovaj je uvjet zadovoljen ako je:

$$M_z = m(a_X \vec{R}_X - a_Y \vec{R}_Y) = m(\{A\} \times \{\vec{R}\})_z$$

$$(2.17)$$

iz čega za slučaj neprigušenih vibracija, izvan rezonancije vrijedi $M_z=0$, dok je u rezonanciji za $\Omega=\omega$, potreban moment za osiguravanje dobave energije za vibriranje beskonačnom amplitudom, pri neprigušenoj kritičnoj brzini, jednak:

$$M_{\varepsilon} = mt \frac{\omega^3}{2} a^2 \tag{2.18}$$

Ako pak postoji vanjsko prigušenje, iz izraza (2.11), (2.13) i (2.14) slijedi da je moment

$$M_{z} = -ma^{2} \Omega^{2} |C(\Omega)| \sin \psi$$
(2.19)

potreban za održanje konstantne brzine vrtnje Ω . U suprotnom bi došlo do usporavanja rotora.

2.1.1. Utjecaj težine na vibracije Jeffcottovog rotora

Utjecaj težine na stacionarne vibracije horizontalnih Jeffcottovih rotora može se sagledati kroz rješenje diferencijalnih jednadžbi:

$$n\ddot{R}_{\chi} + c_{\chi}\dot{R}_{\chi} + kR_{\chi} = ma_{\chi}\dot{\Phi}^{2} + ma_{\chi}\ddot{\Phi}$$

$$n\ddot{R}_{\chi} + c_{\chi}\dot{R}_{\chi} + kR_{\chi} = ma_{\chi}\dot{\Phi}^{2} - ma_{\chi}\ddot{\Phi} - mg$$

$$(2.20)$$

Rješenje navedenih diferencijalnih jednadžbi, prikazano u vektorskom obliku, u fiksnom koordinatnom sustavu iznosi:

$$\{R\} = R_{\chi} + jR_{\gamma} = |C(\Omega)|\{a\}e^{j(\Omega+\psi)} - \frac{jg}{\omega^2}$$
(2.21)

dok je ono u odnosu na koordinatni sustav koji rotira zajedno s diskom:

$$\{r\} = R_{x} + jR_{y} = |C(\Omega)|\{a\}e^{j\psi} - \frac{jg}{\omega^{2}}e^{-j\Omega}$$
(2.22)

Za razliku od opterećenja debalansa koje se giba sinhrono s pomičnim koordinatnim sustavom vezanim za centar diska Jeffcottovog rotora, opterećenje uslijed sile teže daje harmoničko gibanje u odnosu na promatrača vezanog uz centar diska. Zbog toga je težina kod horizontalnog Jeffcottovog rotora uzrok izmjeničnog naprezanja savijanja rotora, a čija posljedica su sile unutarnjeg rotorova prigušenja koje kod pojedinih tipova horizontalnih rotora mogu imati vrlo bitan upliv na vibracijsko ponašanje rotora. Kod rotora s ortotropnim ležajevima će utjecaj težine rotora kao i unutarnjeg

rotorova prigušenja na vibracijske karakteristike biti uočljiv kroz rezonanciju pri frekvenciji dvostruko manjoj od kritične brzine rotora tj. preko tzv. "poltog" harmonika kritične brzine rotora.

2.2. Giroskopski efekt (Stodola-Greenov model)

Prethodno opisanim Jeffcottovim modelom, masa rotora je predstavljena materijalnom

česticom, te je ovakav model neadekvatan za objašnjenje svih pojava kod fleksibilnih rotora, a koje nastaju uslijed činjenice da su ovi dinamička tijela. Potpuniji model kojeg je izveo Stodola [3] a usavršio Green [4] (slika 2.3), sadrži kruti disk, ne nužno tanak, i objašnjava većinu pojava vezanih uz pojmove vlastitih frekvencija, kritičnih brzina i sinhronog odziva. Navedene fenomene objašnjava i model Jeffcotovog rotora s nesimetrično postavljenim diskom, obrađen u literaturi [5].

Položaj diska određen je Eulerovim kutevima β_X , β_Y i Φ

prema slici 2.4. Koordinatni sustavi x, y, z su pomični odnosno X, Y, Z nepomični, s osi z kao osi rotacije. Rotacijom za kutove β_X i β_Y prelazi se iz nepomičnog koordinatnog sustava X, Y, Z u pomoćni koordinatni sustav x', y', z te se tako definira os z u pomičnom koordinatnom sustavu (sl.2.4. lijevo). Daljnjom rotacijom za kut Φ oko te osi dolazi se i do preostalih dvaju osi x i y lokalnog koordinatnog sustava (sl.2.4. desno). Kutovi β_X i β_Y predstavljaju kutove elastične deformacije osovine na mjestu diska za koju se pretpostavlja da je mala. Diferencijalnim jednadžbama za translacijske pomake kod savijanja dodaju se diferencijalne jednadžbe rotacijskih pomaka koje u X-Z i Y-Z ravninama glase:

Sl. 2.4. Definicija Eulerovih kutova Stodola-Greenovog modela rotora

$$\begin{split} m\ddot{R}_{\chi} &= f_{\chi} + \bar{f}_{\chi} + ma_{\chi}\dot{\Phi}^{2} + ma_{\gamma}\ddot{\Phi} \\ J\ddot{\beta}_{\chi} &= M_{\gamma} + \overline{M}_{\gamma} + \dot{\Phi}J_{z}\dot{\beta}_{\chi} + \dot{\Phi}^{2}J_{\chi z} + \ddot{\Phi}J_{\gamma z} \\ m\ddot{R}_{\gamma} &= f_{\gamma} + \bar{f}_{\gamma} + ma_{\gamma}\dot{\Phi}^{2} - ma_{\chi}\ddot{\Phi} \\ J\ddot{\beta}_{\chi} &= M_{\chi} + \overline{M}_{\chi} - \dot{\Phi}J_{z}\dot{\beta}_{\gamma} + \dot{\Phi}^{2}J_{\gamma z} + \ddot{\Phi}J_{\chi z} \end{split}$$
(2.23)

Uz to je diferencijalna jednadžba rotacije oko osi rotacije z definirana izrazom:

$$J_z \vec{\Theta} = M_z + \vec{\beta}_x J_{xz} + \vec{\beta}_y J_{yz} - \vec{R}_y ma_y + \vec{R}_x ma_y$$
(2.24)

Pri tome je:

J - glavni maseni moment inercije oko promjera ($J=J_{XX}=J_{YY}$),

J., polarni maseni moment inercije.

Nadalje su centrifugalni momenti inercije (J_{NZ}, J_{YZ}) u nepomičnom koordinatnom sustavu povezani s centrifugalnim momentima inercije (J_{XZ}, J_{YZ}) u pomičnom koordinatnom sustavu izrazima:

$$J_{\chi Z} = J_{\chi Z} \cos \Phi - J_{\chi Z} \sin \Phi$$

$$J_{\chi Z} = J_{\chi Z} \sin \Phi + J_{\chi Z} \cos \Phi$$
(2.25)

Elastične sile (\bar{f}_x, \bar{f}_y) i momenti $(\overline{M}_x, \overline{M}_y)$ Stodola-Greenovog modela rotora mogu biti definirani pomoću sljedećih matrica krutosti:

$$\left\{ \begin{array}{c} \overline{f}_{X} \\ \overline{M}_{Y} \end{array} \right\} = -\frac{12EI}{l^{3}} \left[\begin{array}{c} 1 & -\frac{l}{2} \\ -\frac{l}{2} & \frac{l^{2}}{3} \end{array} \right] \left\{ \begin{array}{c} R_{X} \\ \beta_{Y} \end{array} \right\} = -\left[K_{YZ} \right] \left\{ \begin{array}{c} R_{X} \\ \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}{c} \overline{f}_{Y} \\ \overline{M}_{X} \end{array} \right\} = -\frac{12EI}{l^{3}} \left[\begin{array}{c} 1 & \frac{l}{2} \\ \frac{l}{2} & \frac{l^{2}}{3} \end{array} \right] \left\{ \begin{array}{c} R_{Y} \\ \beta_{X} \end{array} \right\} = -\left[K_{YZ} \right] \left\{ \begin{array}{c} R_{Y} \\ \beta_{X} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{X} \end{array} \right\} = -\left[K_{YZ} \right] \left\{ \begin{array}{c} R_{Y} \\ \beta_{X} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{X} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{X} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{X} \end{array} \right\} = -\left[K_{YZ} \right] \left\{ \begin{array}{c} R_{Y} \\ \beta_{X} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{X} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{X} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \end{array} \\ \left\{ \begin{array}{c} \beta_{Y} \\ \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}{c} \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}[c] \beta_{Y} \end{array} \\ \left\{ \begin{array}[c] \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}[c] \beta_{Y} \end{array} \\ \left\{ \begin{array}[c] \beta_{Y} \end{array} \\ \left\{ \begin{array}[c] \beta_{Y} \end{array} \right\} \\ \left\{ \begin{array}[c] \beta_{Y} \end{array} \\ \left\{ \begin{array}[c] \beta_{Y} \end{array} \\ \left\{ \left\{ \begin{array}[c] \beta_{Y} \end{array} \right\} \\ \left\{ \left\{ \begin{array}[c] \beta_{Y} \end{array} \right\} \\ \left\{ \left\{ \begin{array}$$

dok u slučaju rotora s nesimetrično postavljenim diskom [5] one iznose:

$$K_{3/2} \left[= \begin{bmatrix} \frac{a^3 + b^3}{a^3 b^3} 3EI & -\frac{b - a}{a^2 b^2} 3EII \\ -\frac{b - a}{a^2 b^2} 3EII & \frac{1}{ab} 3EII \end{bmatrix} \qquad i \qquad [K_{3/2}] = \begin{bmatrix} \frac{a^3 + b^3}{a^3 b^3} 3EI & \frac{b - a}{a^2 b^2} 3EII \\ \frac{b - a}{a^2 b^2} 3EII & \frac{1}{ab} 3EII \end{bmatrix}, \qquad (2.27)$$

gdje su s *a* i *b* označene udaljenosti diska od lijevog i desnog oslonca. Stodola-Greenov model kao i Jeffcottov model s nesimetrično postavljenim diskom znatno su složeniji od običnog Jeffcottovog modela, a novim parametrima objašnjavaju se:

a) Utjecaj masenog momenta inercije (oko promjera) na vlastite frekvencije rotora u stanju mirovanja.b) Efekti utjecaja giroskopskog momenta na vlastite frekvencije u ovisnosti o brzini vrtnje, te kao

posljedicu toga nužnost razlikovanja vlastite frekvencije i kritične brzine.

c) Činjenica da centrifugalni momenti inercije masa predstavljaju izvor sinhrone uzbude rotora analogno debalansu.

2.2.1. Utjecaj momenta inercije masa na vlastite frekvencije u stanju mirovanja

Vlastite frekvencije mirujućeg Stodola-Greenovog modela mogu se izračunati iz sljedećih izraza:

$$\begin{bmatrix} m & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \ddot{R}_{\chi} \\ \ddot{\beta}_{\chi} \end{bmatrix} + \begin{bmatrix} K_{\chi Z} \end{bmatrix} \begin{bmatrix} R_{\chi} \\ \dot{\beta}_{\chi} \end{bmatrix} = 0$$

$$\begin{bmatrix} m & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \ddot{R}_{\chi} \\ \ddot{\beta}_{\chi} \end{bmatrix} + \begin{bmatrix} K_{\chi Z} \end{bmatrix} \begin{bmatrix} R_{\chi} \\ \beta_{\chi} \end{bmatrix} = 0$$

$$(2.28)$$

Kako su gibanja u X-Z i Y-Z ravninama međusobno nezavisna, te zbog simetrije elastičnih i inercijskih svojstava, iz bilo koje od ovih matričnih jednadžbi može se dobiti karakteristična jednadžba:

$$\hat{\omega}^4 - 4(1 + d^{-1})\hat{\omega}^2 + 4d^{-1} = 0$$
(2.29)

pri čemu su:

$$d = \frac{3J}{ml^2}, \ \hat{\omega} = \frac{\omega}{\omega_0}, \ \omega_0^2 = \frac{3EI}{ml^3}$$
(2.30)

Parametar *d* predstavlja mjeru utjecaja masenog momenta inercije diska. Za tanki disk polumjera r_d , on poprima vrijednost:

$$d = \frac{3r^2}{4l^2}$$
(2.31)

Vlastita se vrijednost ω_0 dobiva za disk bez momenta inercije, odnosno za koncentriranu masu na kraju konzole. Opće rješenje vlastitih vrijednosti izraza (2.29) glasi:

$$\hat{\omega}_{1,2}^2 = 2(1+d^{-1}) \mp 2\sqrt{(1+d^{-1})^2 - d^{-1}}$$
(2.32)

uz dva granična slučaja:

za

za

$$d = 0 \Longrightarrow \quad \omega_1^2 = \omega_0^2; \ \omega_2^2 = \infty,$$
$$d^{-1} = 0 \Longrightarrow \quad \omega^2 = 0; \ \omega^2 = 4\omega^2.$$

Opće rješenje karakteristične jednadžbe (2.29) prikazano je dijagramom na slici 2.5.

Na sličan se način može dobiti i opće rješenje karakteristične jednadžbe Jeffcottovog rotora s nesimetrično postavljenim diskom s time da treba uzeti u obzir promjenu izraza za mjeru utjecaja momenta inercije diska *d* te izraza za vlastitu frekvenciju rotora:

$$\omega_0 = \sqrt{\frac{a^3 + b^3}{a^3 b^3} \frac{3EI}{m}}$$
(2.33)

d kada bi se umjesto diska uzela k. Utjecaj masenog momenta inercije diska na koncentrirana masa. U oba slučaja bezdimenzijske vlastite frekvencije mirujućeg rotora nameće se zaključak da je glavni utjecaj momenta inercije masa diska na mirujući

rotor dodatna vlastita frekvencija, vezana za dodatni rotacijski stupanj slobode, te sniženje prve vlastite frekvencije rotora.

2.2.2. Utjecaj giroskopskog momenta na vlastite frekvencije

Za rotor koji se okreće konstantnom brzinom, karakteristična se jednadžba sustava može dobiti uvrštavanjem pretpostavljenog rješenja

$$\binom{R_x}{\beta_Y} = \begin{cases} c_1 \\ c_2 \end{cases} \cos \omega t \quad \text{i} \quad \begin{cases} R_Y \\ \beta_X \end{cases} = \begin{cases} c_1 \\ -c_2 \end{cases} \sin \omega t$$
 (2.34)

u jednu od homogenih jednadžbi:

ŵ

$$\begin{bmatrix} m & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \ddot{R}_{\chi} \\ \ddot{\beta}_{\chi} \end{bmatrix} - \Omega \begin{bmatrix} 0 & 0 \\ 0 & J_{z} \end{bmatrix} \begin{bmatrix} \dot{R}_{y} \\ \dot{\beta}_{\chi} \end{bmatrix} + \begin{bmatrix} K_{\chi Z} \\ \beta_{Y} \end{bmatrix} = 0$$

$$\begin{bmatrix} m & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \ddot{R}_{y} \\ \ddot{\beta}_{\chi} \end{bmatrix} + \Omega \begin{bmatrix} 0 & 0 \\ 0 & J_{z} \end{bmatrix} \begin{bmatrix} \dot{R}_{\chi} \\ \dot{\beta}_{Y} \end{bmatrix} + \begin{bmatrix} K_{\gamma Z} \\ \beta_{\chi} \end{bmatrix} = 0$$

$$(2.35)$$

te se i za Stodola-Greenov i za Jeffcottov model s nesimetrično namještenim diskom dobiva:

$$(2.36)^{1} - b\hat{\Omega}\hat{\omega}^{3} - 4(1+d^{-1})\hat{\omega}^{2} + 4b\hat{\Omega}\hat{\omega} + 4d^{-1} = 0$$

uz

$$\hat{\omega} = \frac{\omega}{\omega_0}, \quad \hat{\Omega} = \frac{\Omega}{\omega_0}, \quad b = \frac{J_z}{J}.$$
(2.37)

brzine vrtnje.

može

Za određenu brzinu vrtnje Ω i mieru

utjecaja masenog momenta inercije

diska d, ova jednadžba ima četiri

realna korijena, dva pozitivna i dva

negativna, označena redom kao

 $\hat{\omega}_1, \hat{\omega}_2, \hat{\omega}_{-1}$ i $\hat{\omega}_{-2}$. Dijagram na slici

2.6 prikazuje rješenja za razlićite

Za $\Omega=0$, rješenje se svodi na

 $\hat{\omega}_{1} = \hat{\omega}_{-1} = \hat{\omega}_{1}, \quad \hat{\omega}_{2} = \hat{\omega}_{-2} = \hat{\omega}_{2}, \text{ pri}$

čemu su $\hat{\omega}_1$ i $\hat{\omega}_2$ definirani izrazom

(2.32.). Fizikalno se značenje

pozitivnih i negativnih rješenja bolje

promatraniem

uočiti

2.6. Vlastite frekvencije Stodola-Greenovog modela uz
$$d=1/3$$

pretpostavljenih rješenja prema izrazu (2.36.) Kako je to prikazano na slici 2.7, pozitivni i negativni korijeni označavaju suprotne smjerove precesije rotora. Pri tome su smjerovi rotacije i precesije isti za pozitivne a suprotni za negativne korijene.

SI. 2.7. Gibanje kod naprednih i natražnih kritičnih brzina

Presjecište linije $\hat{\omega} = \hat{\Omega}$ s krivuljama rješenja jednadžbe (2.36.), definira jedinu sinhronu kritičnu brzinu napredne precesije $\hat{\omega}_{ie}$, dok presjecišta linije $\hat{\omega} = -\hat{\Omega}$ s istima definiraju dvije sinhrone kritične brzine natražne precesije $\hat{\omega}_{1e}$ i $\hat{\omega}_{2e}$. Sa slike 2.6, također se može uočiti da je $\hat{\omega}_{-1e} < \hat{\omega}_{1e} < \hat{\omega}_{1e}$, što je uobičajeni rezultat za rotore.

Giroskopski moment dakle daje sinhrone kritične brzine koje su više, odnosno niže, od vlastitih frekvencija mirujućeg rotora. Ovaj se utjecaj povišenja korijena $\hat{\omega}_{i}(\hat{\Omega})$ i $\hat{\omega}_{i}(\hat{\Omega})$ s povećanjem brzine vrtnje često naziva giroskopsko ukrućivanje. Prema slici 2.6, korijen $\hat{\omega}$, vrlo brzo raste s povećanjem Ω , tako da uopće ne postoji presjecište s linijom $\hat{\omega} = \hat{\Omega}$. Može se pokazati da uključivanje posmičnih deformacija u model snizuje vrijednosti krivulje $\hat{\omega}_{0}$ te se na taj način može jednostavnije dosegnuti druga sinhrona kritična brzina napredne precesije, [6].

Odnos koji će definirati sinhrone kritične brzine može se dobiti uvrštavajući $\hat{\Omega} = \hat{\omega}$ u izraz (2.36), što daje:

$$\hat{\omega}^{4}(b-1) - 4(b-1-d^{-1})\hat{\omega}^{2} - 4d^{-1} = 0$$
(2.37)

Dva realna korijena ove jednadžbe označena su na slici 2.7 kao A i A'. Na sličan se način uvrštenjem $\hat{\Omega} = -\hat{\omega}$ dobije izraz za sinhrone kritične brzine natražne precesije:

$$\hat{\omega}^{4}(b+1) - 4(b+1+d^{-1})\hat{\omega}^{2} + 4d^{-1} = 0$$
(2.38)

Kod dijelova koji rotiraju, hidrodinamičke sile i nelinearnosti oslonaca, često proizvode harmonijske uzbude čije su frekvencije višekratnici brzine vrtnje, te takve uzbude također uzrokuju napredno precesijsko gibanje rotora. Do rezonancije će doći ako se frekvencija takve uzbude poklapa s pozitivním korijeníma $\hat{\omega}_1$ i $\hat{\omega}_2$ izraza (2.36.). Presjecište krivulje $\hat{\omega}_2$ i linije $\hat{\omega} = 3\hat{\Omega}$ na slici 2.6 pokazuje takvu mogućnost.

Sinhrone kritične brzine Stodola-Greenovog modela i Jeffcottovog modela s nesimetrično namještenim dískom potpuno su jednakog praktičnog značenja kao i kritične brzine Jeffcottovog modela, odnosno, vrtnja rotora kritičnom brzinom, ili u njenoj blizini, uzrokuje velike i potencijalno opasne deformacije. Oblici vibriranja povezani s sinhronim kritičnim brzinama mogu izazvati i nestabilnu precesiju (poglavlje 2.3). Asinhrone kritične brzine u principu se ne uzbuđuju debalansom rotora i modovi vibriranja povezani s njima imaju tendenciju stabilizacije pod utjecajem onih faktora koji istovremeno utječu na destabilizaciju sinhronih modova vibriranja.

2.2.3. Stacionarni odziv Stodola-Greenovog modela rotora

Usporedbom Stodola-Greenovog i Jeffcottovog modela, uočava se sličnost u dijelovima koji

postavljenim diskom

sadrže centrifugalne momente inercije J_{xz} i J_{yz} (izrazi 2.25-2.27), te komponente debalansa a_x i a_y (izrazi (2.1) i 2.2). Slika 2.8. prikazuje rotor s diskom koji nije okomit na njega. Ovakva će situacija uzrokovati dinamička opterećenja na rotor koja su analogna onima nastalim uslijed debalansa. Prema izrazu (2.23), a za konstantnu SI. 2.8. Stodola-Greenov model s nesimetrično brzinu vrtnje, vrijede jednadžbe:

$$\begin{array}{l} m & 0\\ 0 & J \end{array} \left\{ \begin{array}{c} \ddot{R}_{\chi}\\ \ddot{\beta}_{\chi} \end{array} \right\} - \Omega \begin{bmatrix} 0 & 0\\ 0 & J_{z} \end{bmatrix} \left\{ \begin{array}{c} \dot{R}_{y}\\ \dot{\beta}_{\chi} \end{array} \right\} + \left[K_{\chi 2} \right] \left\{ \begin{array}{c} R_{\chi}\\ \beta_{\gamma} \end{array} \right\} = \Omega^{2} \left\{ \begin{array}{c} ma_{\chi}\\ J_{\chi 2} \end{array} \right\} \\ m & 0\\ 0 & J \end{bmatrix} \left\{ \begin{array}{c} \ddot{R}_{y}\\ \ddot{\beta}_{\chi} \end{array} \right\} + \Omega \begin{bmatrix} 0 & 0\\ 0 & J_{z} \end{bmatrix} \left\{ \begin{array}{c} \dot{R}_{\chi}\\ \dot{\beta}_{\gamma} \end{array} \right\} + \left[K_{\gamma 2} \right] \left\{ \begin{array}{c} R_{y}\\ \beta_{\chi} \end{array} \right\} = \Omega^{2} \left\{ \begin{array}{c} ma_{\gamma}\\ -J_{\gamma 2} \end{array} \right\} \\ \end{array}$$

uz

$$\begin{cases}
ma_{y} \\
J_{xz}
\end{cases} = \begin{cases}
ma_{y} \\
J_{yz}
\end{cases} \cos \Omega t - \begin{cases}
ma_{y} \\
J_{yz}
\end{cases} \sin \Omega t$$

$$\begin{cases}
ma_{y} \\
-J_{yz}
\end{cases} = \begin{cases}
ma_{x} \\
-J_{yz}
\end{cases} \sin \Omega t + \begin{cases}
ma_{y} \\
-J_{yz}
\end{cases} \cos \Omega t$$
(2.40)

(2.39)

Stacionarno se rješenje dobiva uvrštenjem pretpostavljenog rješenja:

$$\begin{cases}
 R_{\chi} \\
 \beta_{\gamma}
 \end{bmatrix} = \begin{cases}
 a_{1} \\
 a_{2}
 \end{bmatrix} \cos \Omega t - \begin{cases}
 b_{1} \\
 b_{2}
 \end{bmatrix} \sin \Omega t$$

$$\begin{cases}
 R_{\gamma} \\
 \beta_{\chi}
 \end{bmatrix} = \begin{cases}
 a_{1} \\
 -a_{2}
 \end{bmatrix} \sin \Omega t + \begin{cases}
 b_{1} \\
 b_{2}
 \end{bmatrix} \cos \Omega t$$
(2.41)

u jednu od jednadžbi (2.39). Ovo je rješenje sinhrono, a što se vidi pišući ga u kompleksnom obliku:

$$\{R\} = R_{y} + jR_{y} = (a_{1} + jb_{1})e^{j\Omega i}$$
(2.42)

Jednadžba (2.42) pokazuje da središte diska precesira u kružnoj orbiti u istom smjeru, te s istom frekvencijom kao i vektor debalansa $\{A\} = ae^{\mu \alpha t}$. Iako ovaj rezultat pokazuje da se asinhrone kritične brzine ne uzbuduju debalansima ili momentima inercije, primijećeno je međutim da se u eksploataciji rotora i drugih rotacijskih dijelova, povremeno pojavljuju i takve kritične brzine. Brosens i ostali [7] i Ardayfio i ostali [8] su pokazali da se ovo može objasniti ortotropnošću krutosti strukture oslonaca. Ako se npr. na kraj Stodola-Greenovog modela rotora na mjestu diska (slika 2.3) doda opruga koja će povećati krutost u X smjeru matrica [K_{XZ}] u izrazu (2.26) poprima oblik:

$$[K_{XZ}] = -\frac{3EI}{l^3} \begin{bmatrix} 4 + k_{op} & -2l \\ -2l & \frac{4l^2}{3} \end{bmatrix}$$
(2.43)

dok $[K_{YZ}]$ ostaje nepromijenjena. Sada je odgovarajuće stacionarno rješenje jednadžbe (2.39)

$$\begin{cases}
 R_{y} \\
 \beta_{y} \\
 R_{y} \\
 \beta_{x}
 \end{bmatrix} = \begin{cases}
 a_{1} \\
 a_{2} \\
 a_{3} \\
 a_{4}
 \end{bmatrix} \cos \Omega t + \begin{cases}
 b_{1} \\
 b_{2} \\
 b_{3} \\
 b_{4}
 \end{bmatrix} \sin \Omega t$$
(2.44)

što daje sljedeće kompleksno rješenje:

$$(a_{1} + b_{3}) + j(a_{3} - b_{1})]e^{j\Omega t} + \frac{1}{2}[(a_{1} - b_{3}) + j(a_{3} + b_{1})]e^{-j\Omega t}$$

$$= \{F\}e^{j\Omega t} + \{G\}e^{-j\Omega t}$$
(2.45)

pri čemu su kompleksni koeficijenti $\{F\}$ i $\{G\}$ amplitude naprednog i natražnog precesijskog gibanja. Jednadžba (2.45) ukazuje, u ovom slučaju, na prijelazak s kružne na eliptičnu putanju rotora gledano aksijalno tj. u smjeru uzdužne osi rotora.

2.3. Utjecaj prigušenja na stabilnost i odziv rotora

 $\{R\} = \frac{1}{2}$

U prethodnim je poglavljima opisano sinhrono gibanje rotora, svojstvo kojega je jednaka brzina precesije i rotacije. Kod kritičnih su brzina, kada se brzina vrtnje poklopi s vlastitom frekvencijom, predviđene velike deformacije koje će, ako nema prigušenja, rasti linearno s vremenom. No kod rotora se može pojaviti i drugi, potencijalno opasni, način gibanja a koji ima slijedeća svojstva:

a) Ispod određene brzine vrtnje Ω_s , *koja se* naziva početnom brzinom nestabilnosti, gibanje je rotora stabilno i sinhrono. Iznad ove brzine, koja je uvijek veća od prve kritične brzine, javlja se podsinhrona komponenta gibanja.

b) Za brzine vrtnje iznad Ω_s , ova komponenta eksponencijalno raste s vremenom. Precesijsko je gibanje istog smjera kao i rotacija.

c) Pojava ili izostanak nestabilnosti rotora najviše ovisi o njegovoj balansiranosti.

Ovakvo se gibanje naziva nestabilna precesija i može prilično jednostavno biti dijagnosticirano na mjernom uređaju provođenjem FFT analize frekventnog spektra pri nekoliko uzastopnih (obično desetak do dvadesetak) brzina vrtnje. Dobiveni dijagram uobičajeno se naziva kaskadni (waterfall) dijagram i jedan ilustrativan primjer prikazan je u [9]. Dijagram je snimljen na ležaju pri startanju motora s dva diska snage 73.5 W koji postaje nestabilan pri brzinama vrtnje od oko 6750 omin⁻¹ pri

čemu je utvrđeno da je uzročnik whip ulja destabilizirajuće sile. Whip ulja se ovdje pojavljuje zbog nedovoljno visokog tlaka hidrodinamičkom u ležaju. Snimljeni spektri pri nižim brzinama vrtnje sadrže Fourierove komponente povezane s prvim harmonikom vrtnje, tj. brzine povezane s sinhronim naprednim i mnogo manje s sinhronim natražnim odzivom. Pri

porastu brzine vrtnje dostignuta je početna brzine nestabilnosti gdje naglo rastu sadržaji podsinhronih (1/3 i 2/3 harmonika) komponenti brzine vrtnje vezanih uz naprednu precesiju, koji izazivaju nestabilnost. Osim toga, što je manje bitno, pri toj brzini vrtnje počinju se pojavljivati i natražne (lijevo) i napredne (desno) komponente uslijed debalansa, sl.2.9. Nekoliko je fizikalnih mehanizama

potvrđeno kao mogući uzročnici nestabilnog gibanja, odnosno nestabilne precesije rotora. Ranije je navedeno da vanjsko prigušenje ima pozitivni utjecaj na sinhrono gibanje rotora no kod unutarnjeg je

prigušenja stanje drugačije. Ono se definira u pomičnom koordinatnom sustavu izrazom

$$\{F_{sy}\} = -c_y \left(\dot{R}_s + j\dot{R}_y\right) = -c_y \left\{\dot{R}\right\}$$
(2.46)

Vektor $\{\dot{R}\}$ predstavlja vremensku promjenu

Sl. 2.10. Shematski prikaz unutarnjeg prigušenja rotora vektora $\{R\}$ u odnosu na x-y-z koordinatni

sustav. Za čisto sinhrono gibanje ovaj vektor

ima nultu vrijednost. Izmjenično naprezanje savijanja, koje nastaje npr. uslijed težine rotora, povećava sile unutarnjeg prigušenja, zbog efekta histereze materijala ili međusobnog trenja tlačno i vlačno deformiranih dijelova [10]. Shematski prikaz unutarnjeg prigušenja osovine rotora dan u [11], prikazan je na sl. 2.10. Vektori brzina $\{\hat{\vec{k}}\}$ i $\{\hat{\vec{k}}\}$ međusobno su povezani izrazom:

$$\dot{R}$$
 = \hat{R} + {k} $\dot{\Phi} \times \{R\}$ (2.47)

pri čemu je $\{k\}\dot{\Phi}$ kutna brzina x-y-z koordinatnog sustava u odnosu na X, Y, Z. Prema tome su komponente sile prigušenja $\{F_{cu}\}$ u nepomičnom koordinatnom sustavu:

$$F_{cux} = -c_u (\dot{R}_x + \Omega R_y)$$

$$F_{cuy} = -c_u (\dot{R}_y - \Omega R_y)$$
(2.48)

S unutarnjim prigušenjem, homogena verzija jednadžbe (2.10) glasi:

$$\begin{vmatrix} \ddot{R}_{x} \\ \ddot{R}_{y} \end{vmatrix} + 2\zeta \begin{cases} \dot{R}_{y} \\ \dot{R}_{y} \end{cases} + \begin{bmatrix} \omega^{2} & 2\zeta_{y}\omega\Omega \\ -2\zeta_{y}\Omega\omega & \omega^{2} \end{bmatrix} \begin{cases} R_{x} \\ R_{y} \end{cases} = 0$$

$$(2.49)$$

gdje su:

$$2\zeta_{\mu}\omega = \frac{c_{\mu}}{m} \qquad \text{i} \qquad \zeta = \zeta_{\mu} + \zeta_{\mu} \tag{2.50}$$

a ζ_v je omjer vanjskog prigušenja definiran izrazom (2.12). Karakteristična jednadžba izraza (2.49) glasi

$$\hat{s}^{*} + 4\zeta \hat{s}^{*} + 2(1 + 2\zeta^{2})\hat{s}^{2} + 4\zeta \hat{s} + (1 + 4\zeta^{2}_{r}\hat{\Omega}^{2}) = 0$$
(2.51)

uz

$$\widehat{\Omega} = \frac{\Omega}{\omega} \quad \text{i} \quad \widehat{s} = \frac{s}{\omega}, \tag{2.52}$$

gdje je s \hat{s} označena normalizirana Laplaceova varijabla. Jednadžba (2.51) je oblika

$$\hat{s}^4 + a_1 \hat{s}^3 + a_2 \hat{s}^2 + a_3 \hat{s} + a_4 = 0.$$
(2.53)

Za stabilnost vibracijskog sustava, čija je karakteristična jednadžba oblika (2.51) su prema literaturi [12] dovoljni tzv. Routh-Hurwitzovi uvjeti:

koeficijenti a_i moraju biti pozitivni,
mora biti zadovoljeno:

$$\mathbf{I}_{2} = \begin{vmatrix} a_{1} & 1 \\ a_{3} & a_{2} \end{vmatrix} > 0 \qquad i \qquad \Delta_{3} = \begin{vmatrix} a_{1} & 1 & 0 \\ a_{3} & a_{2} & a_{1} \\ 0 & a_{4} & a_{3} \end{vmatrix} > 0 \qquad (2.54)$$

Svi su ovi uvjeti zadovoljeni osim drugog u izrazu (2.54), što daje:

 $\left(1 + \frac{\zeta_v}{\zeta_u}\right)^2 - \tilde{\Omega}^2 > 0 \tag{2.55}$

Iz ovoga se može zaključiti da će model biti nestabilan za kružne brzine veće od Ω_s , definirane izrazom:

$$\bar{\Omega}_{s} = \frac{\Omega_{s}}{\omega} = 1 + \frac{\zeta_{y}}{\zeta_{y}}$$
(2.56)

2.4. Utjecaj ležaja i njihovih oslonaca na stabilnost i odziv rotora

2.4.1. Ortotropna krutost oslonca ležaja

Do sada razmatrani modeli pretpostavljali su krute ležajeve i njihove oslonce. Ako ovi nisu potpuno kruti, svi izvedeni izrazi i dalje vrijede pod pretpostavkom da su svojstva krutosti linearna i simetrična. Sada će koeficijent krutosti k u Jeffcott-ovom modelu biti ekvivalentna krutost serijskog spoja vratila, ležaja i oslonaca. Ukoliko oslonci ležaja imaju različite krutosti u X i Y smjerovima, vrijede slijedeće jednadžbe:

$$m \left\{ \frac{\ddot{R}_{\chi}}{\ddot{R}_{\gamma}} \right\} + \left(c_{\nu} + c_{\mu} \right) \left\{ \frac{\dot{R}_{\chi}}{\dot{R}_{\gamma}} \right\} + \left[\frac{k_{\chi}}{-c_{\mu}\Omega} \frac{c_{\mu}\Omega}{k_{\gamma}} \right] \left\{ \frac{R_{\chi}}{R_{\gamma}} \right\} = ma\Omega^{2} \left\{ \frac{\cos\Omega t}{\sin\Omega t} \right\}$$
(2.57)

Prethodni se izraz može pisati i u obliku

$$\begin{cases}
\ddot{R}_{y} \\
\ddot{R}_{y}
\end{cases} + 2\zeta\omega \begin{cases}
\dot{R}_{y} \\
\dot{R}_{y}
\end{cases} + \begin{bmatrix}
\omega^{2}(1+q) & 2\zeta_{y}\omega\Omega \\
-2\zeta_{y}\omega\Omega & \omega^{2}(1-q)
\end{bmatrix} \begin{cases}
R_{y} \\
R_{y}
\end{cases} = a\Omega^{2} \begin{cases}
\cos\Omega t \\
\sin\Omega t
\end{cases}$$
(2.58)

gdje uz jednadžbe (2.12) i (2.50) vrijedi:

$$\omega^2 = \frac{\vec{k}}{m}, \ \vec{k} = \frac{k_x + k_y}{2}, \ q = \frac{k_y - k_y}{2\vec{k}},$$
(2.59)

Izraz (2.58) ima karakterističnu jednadžbu

$$\hat{s}^{4} + 4\zeta \hat{s}^{3} + 2(1 + 2\zeta^{2})\hat{s}^{2} + 4\zeta \hat{s} + (1 + 4\zeta_{u}^{2}\bar{\Omega}^{2} - q^{2}) = 0$$
(2.60)

Razlika između prethodnog izraza u odnosu na izraz za slučaj simetrične krutosti (2.51) ogleda se u koeficijentu asimetričnosti krutosti q. Analiza stabilnosti ove jednadžbe daje sljedeći uvjet stabilnosti:

$$4\zeta^{2} + q^{2} - 4\zeta_{u}^{2}\widehat{\Omega}^{2} > 0 \quad (2.61)$$

iz čega slijedi definicija početnene brzine nestabilnosti:

$$\overline{\Omega}_{s} = \frac{\Omega_{s}}{\omega} = \sqrt{\left(1 + \frac{\zeta_{v}}{\zeta_{u}}\right)^{2} + \left(\frac{q}{2\zeta_{u}}\right)^{2}}$$
(2.62)

Pri čemu rezultat (2.62) pokazuje da se ortotropnost krutosti oslonaca može koristiti za povećanje kritične brzine nestabilnosti. Izraz (2.58) pisan u bezdimenzijskom obliku glasi:

$$\begin{cases} r_{x}^{*} \\ r_{y}^{-} \end{cases} + 2\zeta \begin{cases} r_{x}^{*} \\ r_{y} \end{cases} + \begin{bmatrix} 1+q & 2\zeta_{x} \bar{\Omega} \\ -2\zeta_{x} \bar{\Omega} & 1+q \end{bmatrix} \begin{bmatrix} r_{x} \\ r_{y} \end{bmatrix} = \bar{\Omega}^{2} \begin{bmatrix} \cos \bar{\Omega} \tau \\ \sin \bar{\Omega} \tau \end{bmatrix}$$
(2.63)

pri čemu su

$$\tau = \omega t, \quad \hat{\Omega} = \frac{\Omega}{\omega}, \quad r_{\chi} = \frac{R_{\chi}}{a}, \quad r_{\gamma} = \frac{R_{\gamma}}{a}$$
(2.64)

a apostrofi označavaju diferencijaciju u odnosu na bezdimenzijsku varijablu vremena τ . Uvrštenjem pretpostavljenog rješenja

$$\begin{cases} r_{x} \\ r_{y} \end{cases} = \begin{cases} a_{1} \\ a_{2} \end{cases} \cos \hat{\Omega}\tau + \begin{cases} b_{1} \\ b_{2} \end{cases} \sin \hat{\Omega}\tau$$
 (2.65)

u izraz (2.63) dobije se rezultat oblika

$$\begin{bmatrix} -\overline{\Omega}^{2}[I] + [K] & 2\zeta \widehat{\Omega}[I] \\ -2\zeta \widehat{\Omega}[I] & -\overline{\Omega}^{2}[I] + [K] \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ b_{1} \\ b_{2} \end{bmatrix} = \begin{bmatrix} \widehat{\Omega}^{2} \\ 0 \\ 0 \\ \widehat{\Omega}^{2} \end{bmatrix}$$
(2.66)

gdje su [I] i [K] jedinična matrica i matrica krutosti. Iz prethodne jednadžbe tada slijedi

$$\{r\} = r_{\chi} + ir_{\gamma}$$

$$\{r\} = \frac{1}{2} [(a_{1} + b_{2}) + j(a_{2} - b_{1})] e^{j\Omega t} + \frac{1}{2} [(a_{1} - b_{2}) + j(a_{2} + b_{1})] e^{-j\Omega t}$$

$$\{r\} = \{f\} e^{j\Omega t} + \{g\} e^{-j\Omega t}$$

$$(2.67)$$

2.4.2. Prigušenje u osloncima ležaja

Vanjsko prigušenje ima povoljni utjecaj na sinhroni odziv rotora, te podizanje kritične brzine

SI. 2.11. Model elastičnog rotora na elastičnim ležajevima

nestabilnosti. No često je vrlo teško praktički izvesti vanjsko prigušenje na rotoru, i ovo se može izvesti jedino preko ležajeva.

Slika 2.11 prikazuje ravninski model elastičnog rotora na elastičnim osloncima. Za ovaj sustav vrijede sljedeće jednadžbe gibanja: R Žigulić-Doktorska disertacija

$$m\ddot{y} + ky - ky_1 = 0$$

$$c_{os}\dot{y}_1 - ky + (k + k_{os})y_1 = 0$$
(2.68)

Vlastita frekvencija neprigušenih vibracija iznosi $\omega = \sqrt{k_e/m}$, gdje je:

 $k_{e} = \frac{kk_{as}}{(k+k_{as})} \tag{2.69}$

Uzimajući da je $k_{\alpha s} >> k$, vlastita je frekvencija približno jednaka $\omega = \sqrt{k/m}$, te uvrštavajući pretpostavljeno rješenje oblika:

$$y = Y(t)e^{j\omega t}$$
 i $y_1 = Y_1(t)e^{j\omega t}$, (2.70)

u izraz (2.68) slijedi:

$$\ddot{Y} + j2\omega\dot{Y} + \omega^2 Y_1 = 0 \tag{2.72}$$

$$\dot{Y}_1 \frac{c_{ax}}{k} + (1 + h + j2\zeta_{ax})Y_1 - Y = 0$$

pri čemu treba uzeti u obzir:

$$h = \frac{k_{os}}{k}$$
 te $2\zeta_{os} = \frac{c_{os}\lambda}{k}$ (2.73)

Zanemarujući više derivacije (\ddot{Y} u prvoj i \dot{Y}_i a drugoj jednadžbi) i eliminirajući Y_l , slijedi:

$$\dot{Y} + \frac{\omega(j+\eta)}{2(1+h)(1+\eta^2)}Y = 0$$

$$\eta = \frac{2\zeta_{as}}{(1+h)}$$
(2.74)

Bezdimenzijski je korijen prigušenog precesijskog gibanja iz izraza (2.68) približno određen s:

$$\hat{s} = \frac{s}{\omega} = -\hat{\sigma} + j\hat{\gamma}$$
(2.75)

gdje su:

$$\hat{\sigma} = \frac{\eta}{2(1+h)(1+\eta^2)} = \frac{\eta}{\eta_1}$$

$$\hat{\gamma} = 1 - \frac{1}{\eta_1}$$
(2.76)

Značenje je ovih jednadžbi što se može definirati optimalni faktor prigušenja za dani odnos krutosti h. Iz $\partial \hat{\sigma} / \partial \eta = 0$, optimalna je vrijednost $\eta = 1$, a najveći odnos prigušenja za rotor

$$\hat{\sigma}_{\max} \approx \frac{1}{4(1+h)} \tag{2.77}$$

Korijeni izraza (2.68) točno su određeni bezdimenzijskom karakterističnom jednadžbom:

×.

18

R. Žigulić-Doktorska disertacija

Dinamika rotora u kliznim ležajevima

$$s^{4} + \hat{s}^{2} \frac{1}{\eta} + \hat{s} + \frac{h}{\eta(1+h)} = 0$$
 (2.78)

Rješenje pokazuje da se korisnost prigušenja smanjuje povećanjem odnosa krutosti *h*. Praktički gledano, postoji nekoliko mogućnosti za povišenje postojećih kritičnih brzina nestabilnosti rotora iznad njegovog radnog područja:

- može se smanjiti utjecaj destabilizirajućih sila, tj. prema izrazu (2.49), potrebno je smanjiti unutarnje prigušenje.

- moguće je povećati vanjsko prigušenje, no to se može raditi samo do određene mjere.

ŝ

kritične brzine *w* se mogu povisiti povećanjem krutosti ležajeva, njihovih oslonaca, ili samog rotora.
može se napraviti oslonac ležaja s ortotropnom krutošću, no na taj se način može proširiti područje brzina vrtnje s velikom amplitudom vibracija, te uzbuditi asinhrone kritične brzine.

2.5. Ubrzavanje rotora kroz kritičnu brzinu

Startanje rotora kao i njegovo zaustavljanje obilježeni su tranzijentnim pojavama pri čemu kutna brzina rotora više nije konstantna. Ona raste (opada) s vremenom pri čemu gibanje može biti jednoliko ubrzano(usporeno) ili čak nejednoliko. Posebnu opasnost pri tome predstavlja spori prolaz kroz područje kritičnih brzina gdje može doći do velikih vibracija rotora i ulazaka u nestabilnosti s mogućim štetnim posljedicama. Utjecaj ubrzavanja(usporavanja) na kritične brzine kod Jeffcottovog rotora prikazan je u literaturi [16]. Na sl. 2.12 prikazan je normirani odziv Jeffcottovog rotora sa sl.2.1

u vertikalnom smjeru za vrijeme startanja a na sl. 2.13 za vrijeme zaustavljanja rotora. Pri tome se na apscisi nalazi bezdimenzijsko vrijeme $\tau = \varepsilon t/\omega$ gdje je ε kutno ubrzanje rotora. U oba slučaja omjer prigušenja Jeffcottovog rotora iznosi $\zeta = 0.02$ a odzivne krivulje su prikazane za različite vrijednosti relativnog ubrzanja $\xi = \varepsilon/\omega^2$.

SI. 2.12. Tranzijentne pojave pri startanju rotora

SI. 2.13. Tranzijentne pojave pri zaustavljanju rotora

Iz odzivnih krivulja je vidljivo da s povećanjem vrijednosti ubrzanja ξ opadaju relativnog maksimalne vrijednosti (peakovi) vertikalnog normiranog odziva Jeffcottovog rotora te da se krivulje viših savijaju u pravcu bezdimenzijskih vremena. To se može objasniti bržim prolaskom kroz kritične brzine pri čemu se rotoru dovodi manja količina kinetičke energije koja prema tome može izazvati i manje vibracije u rezonantnom području. Prema [17] ovaj efekt postaje značajniji tek kod

 $|\xi|=0.5\cdot10^{-3}$ što predstavlja relativno veliko relativno ubrzanje što odgovara relativnom kratkom vremenu starta (zaustavljanja).

2.6. Nelinearni modeli dinamike rotora

2.6.1. Uvod u teoriju nelinearnosti u vibracijskom sustavu

Gotovo svi su vibracijski sustavi po svojoj prirodi nelinearni. Međutim, u cilju pojednostavljenja proračuna a uz zadovoljavajuću inženjersku točnost, oni se često tretiraju u lineariziranom obliku. Temeljni razlog za to su problemi u rješavanju nelineranih diferencijalnih jednadžbi koji nastaju zbog nemogućnosti korištenja principa linearne superpozicije, a ogledaju se u sljedećem [18]:

- homogeno rješenje nelinearne diferencijalne jednadžbe drugog reda nije linearna kombinacija dvaju linearno nezavisnih rješenja,

- ukupno rješenje nelinearne diferencijalne jednadžbe drugog reda ne može biti napisano kao suma homogenog i partikularnog rješenja,

- partikularno rješenje prisilnih vibracija nelinearnog vibracijskog sustava ne može biti prikazano kao suma partikularnih rješenja koja odgovaraju pojedinim komponentama uzbudne sile budući nelinearnost sustava uzrokuje interakciju rješenja,

 konvolucijski integral ne može biti korišten za rješavanje nelinearnih sustava budući je izveden na osnovi principa linearne superpozicije,

 metoda Laplaceove transformacije nije uspješna u rješavanju nelinearnih diferencijalnih jednadžbi.

Nelinearní sustavi su bogati fenomenima koji nisu prisutni u linearnim sustavima. Ovi se fenomeni javljaju čak i kada su nelinearnosti u vibracijskom sustavu jako male. Nelinearnost se vibracijskog sustava ispoljava kroz dva temeljna pojavna mehanizma i to kroz geometrijsku i materijalnu nelinearnost [19]. Kod pojave geometrijske nelinearnosti nelinearnost ovisi samo o geometrijskim veličinama kao što su duljine i pomaci. Pri tome nelinearnost proizlazi iz kinematičkih relacija između generaliziranih koordinata kojima je definirano gibanje vibracijskog sustava. Materijalna nelinearnost pak najčešće proizlazi iz nelinearne veze opterećenje-deformacija (petlja histereze kod elasto-plastičnog materijala). Oba slučaja rezultiraju sustavima nelinearnim diferencijalnim jednadžbama, čije rješenje u analitičkom obliku skoro uvijek nije moguće naći, dok numerička rješenja mogu biti često puta nestabilna a u nekim slučajevima i divergirajuća. Posebne teškoće nastaju u dinamičkim odnosno vibracijskim problemima, u kojima se pojavljuju kvalitativno novi fenomeni. Ovi fenomeni mogu u nekim slučajevima rezultirati potpuno neprediktabilnim

ponašanjem sustava, što može dovesti do nestabilnosti gibanja što je predmetom razmatranja posebne grane primijenjene matematike pod nazivom teorija kaosa [20].

2.6.1.1. Karakteristike nelinearnih vibracija

Na sl. 2.14 prikazano je elastično njihalo koje je vrlo slično matematičkom njihalu, samo što je masa *m* spojena s osloncem, umjesto krutim štapom, pomoću elastične opruge krutosti *k* i duljine u nedeformiranom stanju l_{θ} [21]. Diferencijalne jednadžbe gibanja elastičnog njihala su:

10 12.5

ts

15 17.5 20

m

SI.2.15. Vibracijski sustav s ukrućivanjem

opruge

$$m\ddot{y} + k(l-l_o)\frac{y}{l} = 0,$$

 $m\ddot{x} + k(l-l_{\star})\frac{x}{m} - mg = 0.$

pri čemu je duljina opruge l u određenom položaju jednaka $l = \sqrt{x^2 + y^2}$. Iz jednadžbi (2.79) jasno je vidljiva geometrijska nelinearnost člana jednadžbi koji je vezan uz deformaciju opruge. Nelinearni pomaci u x i y smjeru kao i putanja mase m prikazani su na sl. 2.14a, 2.14b i 2.14c.

Sl. 2.14c Putanja elastičnog njihala u prvih 20 sekundi gibanja

Na sl.2.15 je prikazan nelinearni vibracijski sustav kod kojega nelinearna sila opruge ovisi o prvoj i trećoj potenciji deformacije, te diferencijalna jednadžba oscilatora glasi [22]:

$$m\ddot{x} + 4c_x\dot{x} + 4(k_xx^3 + k_xx) = F_x \cos \Omega t$$
(2.80)

s ukrućivanjem opruge

budući se radi o oscilatoru s ukrućivanjem opruge. Osnovna karakteristika nelinearnih vibracija, koja je direktno vidljiva

iz diferencijalnih jednadžbi gibanja (2.80) je ovisnost vlastite frekvencije sustava o amplitudi pomaka. Iz toga proizlazi činjenica da je analiza prisilnih vibracija takvog sustava bitno različita od analize linearnog sustava. To je vidljivo i na sl. 2.16a na kojoj je prikazan karakteristični izgled rezonantne krivulje za slučaj kada elastična sila raste s povećanjem amplitude tj. kod sustava s ukrućivanjem opruge. SI. 2.16a Amplitudni odziv sustava Tu je vidljiv fenomen tzv. skoka koji je potpuno novi fenomen koji ne postoji u linearnoj teoriji. Ako se sustav počinje promatrati u točki A.

SI. 2.16b Amplitudni odziv sustava s omekšavanjem opruge

te se uzbudna frekvencija lagano povećava, amplituda će kontinuirano rasti do točke B. Daljnjim povećanjem uzbudne frekvencije amplituda se neće više mijenjati kontinuirano, već će napraviti skok prema točki C. U obratnom slučaju, ako se uzbudna frekvencija smanjuje do točke C, amplituda će se povećavati do točke D, zatim napraviti skok u točku A i dalje se kontinuirano smanjivati. Ovi skokovi se javljaju na različitim uzbudnim frekvencijama i amplitudama, što ovisi o tome dali se uzbudna frekvencija smanjuje ili povećava. Ovako opisani fenomen skoka odgovara eksperimentalnom opažanju, pri kojemu se uočavaju nagle promjene vrijednosti amplituda za određene vrijednosti uzbudnih

frekvencija, [23]. Za vibracijskisustav sa omekšavanjem opruge rezultati su prikazani na sl. 2,16b.

Pri određivanju približnog analitičkog rješenja kod prisilnog vibracijskog sustava s nelinearnom karakteristikom može se rješenje predstaviti sumom harmonijskih funkcija frekvencija Ω , 2Ω , 3Ω ,..., $\Omega/2$, $\Omega/3$,..., To znači da u rješenju egzistiraju harmonici viših i nižih redova. Vibracije sustava povezane s frekvencijma višim od osnovne, tj 2Ω , 3Ω ,..., nazivaju se superharmonijske vibracije a one predstavljene frekvencijama $\Omega/2$, $\Omega/3$,...subharmonijske vibracije. Superharmonijske vibracije gotovo uvijek postoje u vibracijskom sustavu, dok subharmonijske vibracije ne moraju nastati. Nastanak subharmonijskih vibracija jako ovisi o prigušenju vibracijskog sustava. Često se događa da, pri malim prigušenjima amplitude superharmonijskih ili subharmnijskih vibracija imaju veći utjecaj na ukupnu amplitudu pomaka nego što ima amplituda osnovne frekvencije, te se tada govori o superharmonijskoj ili subharmonijskoj rezonanciji.

2.6.2. Nelinearni model Jeffcottov rotora s zapinjanjem o stator

Slika 2.17. prikazuje Jeffcottov rotor s radijalnom zračnošću s između rotora i statorskog elementa. Rotacijski debalans rotora uzbuđuje sinhrono gibanje rotora te u području kritičnih brzina postoji povećana mogućnost uspostavljanja kontakta rotora i statora. Kratak pregled pojavnih oblika linearnih i nelinearnih vibracija, za horizontalne i vertikalne rotore, s mogućim uzrocima mehanizmima koji dovode do određenih pojavnih oblika dan je u [24]. Ukoliko

SI. 2.17. Model Jeffcottovog rotora s zračnošću s

dođe do kontakta on može biti kontinuiran ili djelomičan [25], [26]. Iz kontinuiranog kontakta rotora i statora slijediti će dvije mogućnosti dalinjeg gibanja. Prvi tip gibanja je sinhrona napredna precesija rotora izazvana debalansom rotora uz različite položaje kolizijskih zona u frekventnoj domeni. Drugi tip gibanja je whip ili whirl suhog trenja koji može biti izazvan Coulombovom silom trenja u točki kontakta a čija je osnovna karakteristika natražno divergirajuće precesijsko gibanje. Kolizijski fenomen može biti analiziran kroz dvije različite teorije [27]: - teorija kolizije

- teorija kontaktne sile

Interesantnu nadgradnju teorije zapinjanja Jeffcottovog rotora o stator predstavlja i teorija toplinskog efekta, koja će ovdje biti samo spomenuta. Naime zbog kontakta dolazi do razvijanja

topline uslijed trenja koja grije rotor na mjestu kontakta u točki koja se naziva «hot spot» pri čemu dolazi do stvaranja dodatnog debalansa zbog toplinskog iskrivljavanja osovine rotora te zbog temperaturne razlike po obodu rotora, [28]. Pri modeliranju zapinjanja rotora koriste se dodatne toplinske jednadžbe a kontaktna se sila definira u funkciji vlastite frekvencije, krutosti statora i koeficijenta prijelaza topline između rotora i statora [29].

2.6.2.1 Nelinearni model zapinjanja temeljen na teoriji kolizije

Jednadžbe gibanja rotora i statora, osim za vrijeme kolizije, mogu biti napisane na sljedeći način:

 $m_r \ddot{x}_r + c_r \dot{x}_r + k_r x_r = m_r a \dot{\Phi}^2 \cos \Phi + m_r a \dot{\Phi} \sin \Phi$ $m_r \ddot{y}_r + c_r \dot{y}_r + k_r y_r = m_r a \dot{\Phi}^2 \sin \Phi - m_r a \dot{\Phi} \cos \Phi$ $m_s \ddot{x}_s + c_s \dot{x}_s + k_s x_s = 0$ $m_s \ddot{y}_s + c_s \dot{y}_s + k_s y_s = 0$ (2.81)

Veza između precesijskih komponenti brzina, rotora i statora, u prirodnom i Descartesovom koordinatnom sustavu može biti prikazana na sljedeći način, sl.2.18.:

$$\begin{cases} v_{rn} \\ v_{rr} \\ \end{pmatrix} = \left[\boldsymbol{\mathcal{O}} \right] \begin{cases} \dot{x}_{r} \\ \dot{y}_{r} \end{cases} , \qquad \begin{cases} v_{sn} \\ v_{sa} \end{cases} = \left[\boldsymbol{\mathcal{O}} \right] \begin{cases} \dot{x}_{s} \\ \dot{y}_{s} \end{cases}$$
(2.82)
sa
$$\begin{bmatrix} \boldsymbol{\mathcal{O}} \right] = \begin{bmatrix} \cos \gamma & \sin \gamma \\ -\sin \gamma & \cos \gamma \end{bmatrix} \quad uz \quad \tan \gamma = \frac{y_{r} - y_{s}}{x_{r} - x_{s}} \quad (2.83)$$

Pri modeliranju zapinjanja u skladu s kolizijskom teorijom

se smatra da se sudar dešava trenutno i da je utjecaj

impulsa vanjskih sila kao npr. sila u oprugama,

prigušivačima te sila uslijed rotacije debalansa na promjenu

SI.2.18 Model zapinjanja rotora prema teoriji kolizije

X

4 Y

količine gibanja zanemariv u odnosu na utjecaj impulsa normalne sile $\{I_n\}$ i sile trenja $\{I_n\}=\mu$ $\{I_n\}$ generiranih za vrijeme kolizije. Zbog toga se može smatrati da pozicije centara masa rotora i statora prije i nakon kolizije ostaju nepromijenjene a da su promjene količina gibanja u smjeru normale i tangente jednake impulsima kolizijskih sila u pripadnim smjerovima:

$$m_{r} (\mathbf{v}_{m}^{*} - \mathbf{v}_{m}) = -I_{n}$$

$$m_{r} (\mathbf{v}_{m}^{*} - \mathbf{v}_{m}) = -\mu I_{n}$$

$$m_{v} (\mathbf{v}_{m}^{*} - \mathbf{v}_{m}) = I_{n}$$

$$m_{v} (\mathbf{v}_{m}^{*} - \mathbf{v}_{v}) = \mu I_{n}$$
(2.84)

U prethodnom izrazu su znakom apostrofa označene brzine rotora i statora nakon kolizije. Brzine rotora i statora, prije i nakon kolizije, u smjeru normale mogu biti dobivene pomoću koeficijenta restitucije e_r i zakona o održanju količine gibanja po normali, kojeg se dobiva eliminacijom impulsa kolizijskih sila po normali intenziteta I_n iz prve i treće jednadžbe izraza (2.84):

$$e_{r} = \frac{v_{m}' - v_{sn}}{v_{m} - v_{sn}}$$

$$m_{r}v_{m} + m_{s}v_{sn} = m_{r}v_{m} + m_{s}v_{sn}$$
(2.85)

Nadalje brzine po tangenti nakon kolizije, određuju se također eliminacijom impulsa kolizijskih sila po normali ali iz druge i četvrte jednadžbe izraza (2.84):

$$\begin{aligned}
 v_{ri} &= v_{ri} + \mu (v_{ri} - v_{rn}) \\
 v_{si} &= v_{si} + \mu (v_{sn} - v_{sn})
 \end{aligned}$$
(2.86)

Konačno, impuls I_n može biti dobiven vraćanjem novodobivenih vrijednosti za brzine nakon kolizije (jednadžbe (2.85) i (2.86)) u izraze (2.84).

2.6.2.2 Nelinearni model zapinjanja temeljen na teoriji kontaktne sile

U ovom slučaju se mogu definirati jednadžbe gibanja rotora i statora koje vrijede za cijelo vrijeme gibanja (bilo da se rotor i stator nalaze u kontaktu ili su izvan njega), sl.2.19:

$$m_{r}\ddot{x}_{r} + c_{r}\dot{x}_{r} + k_{r}x_{r} = m_{r}a\dot{\Phi}^{2}\cos\Phi + m_{r}a\ddot{\Phi}\sin\Phi - N_{r}\cos\gamma + T_{r}\sin\gamma$$

$$m_{r}\ddot{y}_{r} + c_{r}\dot{y}_{r} + k_{r}y_{r} = m_{r}a\dot{\Phi}^{2}\sin\Phi - m_{r}a\ddot{\Phi}\cos\Phi - N_{r}\sin\gamma - T_{r}\cos\gamma$$

$$m_{s}\ddot{x}_{s} + c_{s}\dot{x}_{s} + k_{s}x_{s} = N_{s}\cos\gamma - T_{s}\sin\gamma$$

$$m_{s}\ddot{y}_{s} + c_{s}\dot{y}_{s} + k_{s}y_{s} = N_{s}\sin\gamma + T_{s}\cos\gamma$$
(2.87)

U prethodnom izrazu je s N_r označen intenzitet vektora normalne sile kojom stator djeluje na osovinu rotora dok je s N_s označen intenzitet vektora normalne sile kojom rotor djeluje na stator. Isti indeksi vrijede i za Coulombove sile trenja *T*. Normalna sila i sila trenja su unutarnje sile i pojavljuju se u parovima za koje vrijedi zakon akcije i reakcije:

$$\{N\} = \{N_r\} = -\{N_s\} ; \{T\} = \{T_r\} = -\{T_s\}$$
(2.88)

te gornje jednadžbe poprimaju sljedeći oblik [30]:

SI.2.19 Model zapinjanja rotora prema teoriji kontaktne sile

$$m_{r}\ddot{x}_{r} + c_{r}\dot{x}_{r} + k_{r}x_{r} = m_{r}a\dot{\Phi}^{2}\cos\Phi + m_{r}a\ddot{\Phi}\sin\Phi - N\cos\gamma + T\sin\gamma$$

$$m_{r}\ddot{y}_{r} + c_{r}\dot{y}_{r} + k_{r}y_{r} = m_{r}a\dot{\Phi}^{2}\sin\Phi - m_{r}a\ddot{\Phi}\cos\Phi - N\sin\gamma - T\cos\gamma$$

$$m_{s}\ddot{x}_{s} + c_{s}\dot{x}_{s} + k_{s}x_{s} = N\cos\gamma - T\sin\gamma$$

$$m_{s}\ddot{y}_{s} + c_{s}\dot{y}_{s} + k_{s}y_{s} = N\sin\gamma + T\cos\gamma$$
(2.89)

Vektor sile trenja u mnogome ovisi o relativnoj tangencijalnoj brzini izmedju statora i rotora u točki kontakta. Pri tome se pretpostavlja da se ležaj giba translacijski, pa će brzina točke kontakta na statoru v_s biti dobivena iz projekcija Descartesovih komponenata brzine geometrijskog centra statora na os tangente, dok se brzina gibanja dodirne točke na osovini rotora v_r dobiva na istovjetan način preko

24

rotorovog geometrijskog centra pri čemu treba uzeti u obzir i brzinu zbog vlastite rotacije. U najvećem broju slučajeva vrijedi da je brzina točke $v_r > v_s$ te u tom slučaju vrijedi [31]:

$$\{T_{i}\} = -\mu_{i}|\{N\}|\{t\}; \{T_{s}\} = \mu_{i}|\{N\}|\{t\},$$
(2.90)

gdje su $\{T_r\}$ i $\{T_s\}$ vektori sila trenja na osovini rotora i statoru, $\{t\}$ je jedinični vektor smjera tangente, dok je μ_d dinamički koeficijent trenja. Mnogo je rjeđi slučaj (npr. kod nestabilnosti pri izuzetno niskim brzinama vrtnje) kada je $\nu_r < \nu_s$ pri čemu onda vrijedi:

$$\{T_r\} = \mu_d |\{N\}|\{t\}; \{T_s\} = -\mu_d |\{N\}|\{t\}$$
(2.91)

Oba navedena slučaja povezuju se s kotrljanjem uz klizanje dok u trećem slučaju nema klizanja, ako je zadovoljen uvjet $v_e = v_x$, te vrijedi:

$$\{T_{s}\} \leq -\mu_{s} \{N\} \{t\}; \{T_{s}\} \leq \mu_{s} \{N\} \{t\}$$
(2.92)

Matematički zapis	Naziv parametra sustava
$\omega_0^2 = k_r / m_r$	vlastita frekvencija Jeffcottovog rotora
$\eta = \Omega / \omega_0$	omjer frekvencija
$2\zeta_r = \omega_0 c_r / k_r$	omjer prigušenja Jeffcottovog rotora
$2\zeta_s = \omega_0 c_s/k_s$	omjer prigušenja statora
$\gamma_s = k_s / k_r$	bezdimenzijska krutost statora
$\gamma_{k} = k_{k} / k_{i}$	bezdimenzijska kontaktna krutost
$v = m_s / m_r$	omjer masa

a zbog nulte vrijednosti relativne tangencijalne brzine između statora i rotora u točki dodira potrebno je uporabiti statički koeficijent trenja. U cilju određivanja utjecaja pojedinih vibracijskih parametara na karakteristike odzivne rotora odzivne sve uobičajeno se karakteristike normiraju s obzirom na veličinu ekscentriciteta centra masa a diska rotora a ujedno se uvode i novi parametri sustava koji su navedeni u tablici 2.1.

Tab. 2.1. Parametri nelinearnog rotorskog sustava

2.6.2.3. Normalna sila dodira kod određivanja stacionarnog odziva

SI. 2.20 Definicija vektora deformacije $\{\delta\}$

Iz sl. 2.20, na kojoj je prikazano zapinjanje rotora o stator, vidljiva je kinematička veza vektora deformacije u kontaktnoj točki $\{\delta\}$, radijalne zračnosti *s* i vektora položaja centara masa rotora $\{r_r\}$ i statora $\{r_s\}$, koja glasi:

$$(2.93)$$
 + $\delta e^{ir} = \{r_r\} - \{r_s\}$

Prema [32] prihvatljiv uvjet za određivanje stacionarnog odziva (pri $\ddot{\varphi} = 0$ i $\dot{\varphi} = \Omega$) Jeffcottovog rotora pri njegovom zapinjanju o stator je apsolutna krutost dodirne točke rotora i statora što zapravo znači da nema preklapanja rotora i statora. Taj uvjet može biti matematički formuliran kao $\delta=0$. Zbog toga cjelokupni vibracijski proračun stacionarnog odziva kontakta rotor-stator može biti proveden upotrebom kompleksnog zapisa vektorskih veličina. Pri tome se upotrebljavaju analitičke metode kompleksne algebre. Položaj kontakta, definiran kutom γ , moguće je odrediti koristeći sljedeći dinamički uvjet:

$$F_{k} = \{N\} + \{T\} = \{\{N\}\} + j|\{T\}\} e^{jr} = |\{N\}|(1+j\mu)e^{jr}$$
(2.94)

iz čega slijedi:

$$\frac{\{F_k\}}{|\{N\}|(1+j\mu)}$$
(2.95)

Sustav jednadžbi gibanja (2.89) napisan u vektorskom obliku sada glasi:

PIY =

$$m_{r}\{\dot{r}_{r}\}+c_{r}\{\dot{r}_{r}\}+k_{r}\{r_{r}\}=-\{F_{k}\}+m_{r}\Omega^{2}ae^{j\Omega}$$

$$m_{s}\{\dot{r}_{s}\}+c_{s}\{\dot{r}_{s}\}+k_{s}\{r_{s}\}=\{F_{k}\}$$
(2.96)

što nakon uvrštenja rješenja za stacionarne vibracije $\{r_r\} = |\{r_r\}|e^{j\Omega}$ i $\{r_s\} = |\{r_s\}|e^{j\Omega}$ daje jednadžbu (2.96):

$$-m_{r}\Omega^{2}[\{r_{r}\}]e^{j\Omega} + jc_{r}\Omega[\{r_{r}\}]e^{j\Omega} + k_{r}[\{r_{r}\}]e^{j\Omega} = -\{F_{k}\} + m_{r}\Omega^{2}ae^{j\Omega}$$

$$-m_{s}\Omega^{2}[\{r_{s}\}]e^{j\Omega} + jc_{s}\Omega[\{r_{s}\}]e^{j\Omega} + k_{s}[\{r_{s}\}]e^{j\Omega} = \{F_{k}\}$$
(2.97)

Iz druge jednadžbe izraza (2.97), moguće je jednostavno dobiti vezu između vektora kontaktne sile i vektora pomaka statora:

$$\{F_k\} = \left(-\Omega^2 m_s + jc_s \Omega + k_s\right) \{r_s\} e^{j\Omega} = \{a_s\} \{r_s\} e^{j\Omega}$$
(2.98)

a vraćanjem vektora kontaktne sile u gornju jednadžbu dobiva se i modul vektora pomaka rotora u funkciji od modula vektora pomaka statora:

$$|\{r_r\}| = (-m_r \Omega^2 + jc_r \Omega + k_r \Omega)^{-1} (m_r a \Omega^2 - \{a_s\}|\{r_s\}|) = \{A_r\}^{-1} (m_r a \Omega^2 - \{a_s\}|\{r_s\}|)$$
(2.99)

Na temelju izraza (2.94) moguće je prikazati modul vektora normalne sile pomoću modula kontaktne sile na sljedeći način:

$$|\{N\}| = \frac{\sqrt{1+\mu^2}}{1+\mu^2} |\{F_k\}|$$
(2.100)

Znajući da za vektor $\{v\} = \{v_1\}\{v_2\}\{v_3\}$ vrijedi $|\{v\}| = |\{v_1\}|\{v_2\}|\{v_3\}|$, [33] to od ranije slijedi:

$$s \frac{\{a_s\}\{r_s\}e^{j'}}{\sqrt{1+\mu^2}} = (\{A_r\}^{-1}m_r a\Omega^2 - \{A_r\}^{-1}\{a_s\}|\{r_s\}| - |\{r_s\}|)e^{j'}$$

$$(2.101)$$

$$\frac{\sqrt{1+\mu^2}}{1+\mu^2}(1+j\mu)\{a_s\}||\{r_s\}||e^{j'}|$$

iz čega se sređivanjem dobiva konačni oblik vektorske jednadžbe pomaka statora [34]:

$$\left(\left(1+\{A_r\}^{-1}|\{a_s\}\}\right)\{r_s\}+s\frac{1+j\mu}{\sqrt{1+\mu^2}}\frac{\{a_s\}}{|\{a_s\}|}\right)\frac{\{r_s\}}{|\{r_s\}|}=\Omega^2\{A_r\}^{-1}m_ra$$
(2.102)

Rješavanjem vektorske jednadžbe (2.102) dobiva se kompleksni broj koji predstavlja vektor položaja statora, te se to rješenje vraća u (2.98) i (2.99) kako bi se dobilo ukupnu kontaktnu silu i vektor položaja osovine na mjestu diska, te u (2.93) kako bi se dobio kut položaja kontakta.

Eksperimentalno utvrđeni utjecaji pojedinih parametara sustava na stacionarno ponašanje nelinearnog modela rotora u kontaktu s statorom diskutirani su u [35] dok su u [32] ti rezultati

SI. 2.21a i 2.21b utjecaj parametara sustava na stacionarno ponašanje nelinearnog modela rotora u kontaktu s statorom

uspoređeni s numeričkim rješenjima kod modeliranja stacionarnog kontakta. Na sl. 2.21a prikazane su rezonantne krivulje (normirana amplituda pomaka rotora, fazni kut i normalna kontaktna sila) pri različitim vrijednostima omjera prigušenja statora ζ_s a na sl. 2.21b rezonantne krivulje pri različitim vrijednostima koeficijenta trenja μ u kontaktnoj točki. Omjer prigušenja statora i koeficijent trenja u kontaktnoj točki reduciraju maximalnu amplitudu rotora na sličan način. S porastom prigušenja prihvatnog ležaja naginjati će se rezonantna krivulja više ka višim frekvencijama tj. dolazi do redukcije amplitude pomaka rotora ali se frekventno područje kontakta može značajno proširiti prema višim frekvencijama. Kod variranja koeficijenta trenja, moguće je zaključiti da s povećanjem koeficijenta trenja ne opadaju samo normirane rotorove amplitude već se reducira i frekventno područje kontakta, sl. 2.21b. Usporedbom dvaju dijagrama vidljivo je da normirana normalna

komponente kontaktne sile opada brže s povećanjem trenja nego s povećanjem prigušenja statora (ako se uzme u obzir $\mu = \zeta_s$). Ta činjenica kao i činjenica o boljoj redukciji rezonantnog područja kod suhog trenje olakšavaju prijevremeno odvajanje rotora od statora i nude stoga tehničku prednost u odnosu na slučaj s prigušenjem prihvatnog ležaja.

Slika 2.22 prikazuje utjecaj mase statora na stacionarno ponašanje sustava rotor-stator. Kod male mase statora ($v < \gamma_s$) leži vlastita frekvencija statora iznad rotorove te se može govoriti o laganom ležaju. S rastućom masom statora opadaju maksimalne amplitude rotora i vrh rezonantne krivulje se pomiče ka nižim brzinama vrtnje. Za v= γ_s padaju vlastite frekvencije rotora i

statora zajedno. I pored toga bit će maksimalni pomak rotora manji nego kod lakših statora. Kod većih masa statora $v > \gamma_s$ iščezavaju potpuno vrhovi rezonantne krivulje a rotorovi pomaci jedva prevazilaze vrijednosti radijalne zračnosti. Iznad rezonantne zone rotor se više ne odvaja od statora premda su rotorovi pomaci manji nego pomaci statora. Kontaktna sila raste s povećanjem brzine vrtnje i odvajanje rotora od statora će biti neprestano otežavano.

SI.2.22. Utjecaj mase rotora i statora pri kontaktu

2.6.2.4. Normalna sila dodira kod određivanja tranzijentnog odziva

Pri simulaciji tranzijentnog odziva, posebno za vrijeme startanja i zaustavljanja rotora, upotreba apsolutne krutosti kontaktne točke između rotora i statora više nije podesna te kontaktnu silu više nije moguće eliminirati iz sustava jednadžbi (2.97). Stoga se za određivanje vibracijskih karakteristika rotora više ne koristi vektorska algebra već različiti tipovi numeričkih metoda. Najpodesniji način za modeliranje normalne kontaktne sile u ovom slučaju je upotreba tzv. fiktivne kontaktne krutosti k_{k} . Normalna komponenta kontaktne sile u tom slučaju glasi [36], [37]:

$$\{N\} = k_{\kappa} \langle \delta \rangle e^{jr} \tag{2.103}$$

Pri čemu je za definiranje intenziteta normalne sile $\{N\}$ rabljen tzv. Foepplov simbol kojime intenzitet vektora deformacije u kontaktnoj točki δ može poprimiti jednu od sljedeće dvije vrijednosti:

$$\left\langle \delta \right\rangle = \begin{cases} 0 & \delta \le 0 \\ \delta & za & \delta > 0 \end{cases}$$
(2.104)

Pojedini autori kao npr. u [31] nadopunjuju izraz (2.103) s fiktivnim kontaktnim prigušenjem temeljem čega bi slijedilo:

Izrazom (2.103) pretpostavljena je linearna zavisnost normalne sile $\{N\}$ deformacije u kontaktnoj točki $\{\delta\}$. Takva se zavisnost može odrediti i eksperimentalno pri čemu za pojedine materijale rotora i statora k_k ne mora biti konstanta, [38]. U radu [39] također je eksperimentalno određena normalna sila mjerenjem momenta trenja uz uporabu mjeračamomenta. Na sl. 2.23 su prikazane normalizirana amplituda rotorova pomaka kao i normalizirana normalna komponenta kontaktne sile pri upuštanju i zaustavljanju (točkasta crta) rotora koji dolazi u kontakt s vibrirajućim bezmasnim statorom. Rezultati su dobiveni numeričkom integracijom uz upotrebu fiktivne kontaktne krutosti k_{k} . Rotor je jednoliko ubrzavao (usporavao) pri čemu je kutno ubrzanje bilo

Sl. 2.23. Tranzijentni odziv rotora kod zapinjanja

 $\eta = \Omega/\omega$

funkcija omjera frekvencija η a samim time implicitno i funkcija brzine vrtnje rotora Ω .

1.5

1.5

2

Kod startanja pri rotorovom približavanju rezonantnom području rotor mekano naliježe na stator te rotor i stator dalje vibriraju zajedno. Pri daljnjem vibriranju slijedi amplituda u potpunosti ranije opisane rezonantne krivulje stacionarnog pogona. Primjetna odstupanja od tih krivulja primjećena su samo kod izlaska iz kontakta i prijelaska na rezonantnu krivulju uslijed vlastitog debalansa. Pri odvajanju rotor još nekoliko puta udara o stator i odskače od statora prije no što prijeđe na samocentriranje u nadkritičnim uvjetima.

Kod zaustavljanja rotora pri pojavi prvog kontakta rotora i statora poprima rotor odmah maksimalnu amplitudnu vrijednost koju onda kroz kontakt postepeno gubi zbog smanjivanja dotoka rotacijske energije. Pritom se rotor dalje spušta po ranije spomenutoj stacionarnoj rezonantnoj krivulji kontakta, sve do trenutka kada izlazi iz kontakta i prelazi na rezonantnu krivulju uslijed vlastitog debalansa.

2.6.2.5."Whip" i "whirl" suhog trenja

Do sada spominjani nelinearni modeli zapinjanja rotora o stator imali su za posljedicu sinhronu naprednu precesiju rotora kao posljedicu potpune odsutnosti ili nedovoljnog intenziteta kontaktne sile trenja. Pri tome se gibanje rotora u kontaktu s vibrirajućim statorom može okarakterizirati kao kotrljanje uz klizanje. Mnogo je opasniji drugi model zapinjanja, koji je karakteriziran čistim kotrljanjem rotora po vibrirajućem statoru uz divergirajuću natražnu asinhronu precesiju. Prvi opis ovakvog gibanja dan je u [40].

Mehanizmi koji dovode do takvog gibanja nazivaju se "whip" i "whirl" suhog trenja i bit će zbog jednostavnosti objašnjeni na Jeffcotovom rotoru gdje je koncentrično s diskom radijusa R_R smješten stator pri čemu je radijalna zračnost s. Stator je elastično zavješen na par opruga s izotropnom krutošću $k_{s,n}$ [41]. Rotor je odlično izbalansiran (debalans rotora ovdje dodatno komplicira dobivene teorijske spoznaje i može dati iskrivljenu sliku efekta) a gravitacijska se sila zanemaruje

(rotor može biti postavljen vertikalno). Ukoliko ne postoji dovoljno jak poremećaj za izazivanje

kontakta rotora i statora rotor rotira kutnom brzinom Ω pri čemu je, zbog odsutnosti debalansa, samocentriran u ležajevima. Pri rotaciji rotora kutnom brzinom Ω postojati će istovremena precesija kutnom brzinom ω . Ukoliko pri tome postoji dovoljno velik koeficijent trenja μ da se uspostavi dovoljna sila trenja za sprečavanje proklizavanja, rotor će se natražno kotrljati po statoru pri čemu je zadovoljen sljedeći kinematički uvjet, (sl.2.24):

$$\omega = -\frac{R_R}{s} \Omega \tag{2.106}$$

SI.2.24 Natražna precesija

Pri tome u ovisnosti od omjera promjera diska R_R i radijalne

zračnosti moguće je dobiti sinhronu, podsinhronu ili nadsinhronu vrijednost precesijske kružne frekvencije.

Na sl. 2.24 je prikazan kontakt rotora čija je amplituda vibracijskog pomaka r_r i statora vibracijske amplitude r_s . Jednadžbe gibanja se sastoje se iz jednadžbe geometrijskog ograničenja i po jedne dinamičke jednadžbe za rotor i stator. Jednadžba geometrijskog ograničenja glasi:

$$r_r = r_v e^{j\phi} + s e^{-j\theta} \tag{2.107}$$

Ako se vlastita frekvencija rotora označi s $\omega_r = \sqrt{k_r/m_r}$ a viskozno se prigušenje rotora definira pomoću koeficijenta gubitka (gubitak vibracijske energije zbog prigušenja po jednom radijanu) η_r ($c_r = \eta_r m_r \omega_r$), tada je dinamička jednadžba gibanja rotora:

$$m_{r}(\omega^{2} + j\eta_{r}\omega_{r}\omega - \omega_{r}^{2})r_{r} = N(1 + j\mu)e^{-j\theta}$$
(2.108)

Na sličan način dobiva se i dinamička jednadžba gibanja statora:

$$m_{s}(\omega^{2} + j\eta_{s}\omega_{s}\omega - \omega_{s}^{2})r_{j} = -N(1 + j\mu)e^{-j\theta}$$
(2.109)

Navedene tri vektorske jednadžbe gibanja za vrijeme kontakta mogu se prevesti u šest skalarni jednadžbi i imaju šest nepoznanica: r_r , r_s , ϕ , θ , μ i N. Režim čistog kotrljanja ima za slučaj $\omega_r < \omega_s$ donju ograničavajuću brzinu vrtnje Ω_l te prema (2.106) pripadnu kružnu brzinu natražne precesije ω_l tako da vrijedi $\omega_r < \omega_1$. Gornja ograničavajuća brzina vrtnje Ω_2 i pripadna kružna brzina natražne precesije ω_2 (iz (2.106)) zadovoljavaju uvjet da ω_2 mora biti manja od vlastite frekvencije kombiniranog sustava rotor-stator [42]:

$$\omega_2 < \sqrt{\frac{k_r + k_s}{m_r + m_s}} \tag{2.110}$$

Vektorske jednadžbe (2.107), (2.108) i (2.109) imaju sljedeća analitička rješenja:

$$\frac{r_s}{r_r} = \frac{\sqrt{m_r \left(\left(\omega^2 - \omega_r^2 \right)^2 + \eta_r^2 \omega_r^2 \omega^2 \right)}}{\sqrt{m_s \left(\left(\omega^2 - \omega_s^2 \right)^2 + \eta_s^2 \omega_s^2 \omega^2 \right)}},$$
(2.111)

10

2

14

12

10

IN(ka)

 $\zeta_{\rm f} = 0.05$

s=2|a|

y's = 2.

 $\zeta_{s} = 0.07$ $\psi = 0.002 \omega_{0}^{2}$

 $\gamma_{\rm K} = 15$

0.5

0.5

v=0

R Žigulić-Doktorska disertacija

Dinamika rotora u kliznim ležajevima

$$\phi = Arc \tan \frac{\eta_x \omega_y \omega}{\omega^2 - \omega_c^2} + Arc \tan \frac{\eta_x \omega_y \omega}{\omega_x^2 - \omega^2}$$
(2.112)

nakon čega slijedi:

0.6

0.5

0.4

0.2

0.1

× 0.3

32

$$\frac{r_r}{s} = \frac{1}{\sqrt{\left(\left(\frac{r_s}{r_r}\sin\phi\right)^2 + \left(1 - \frac{r_s}{r_r}\cos\phi\right)^2\right)}}$$

$$\theta = Arc\tan\frac{\frac{r_s}{r_r}\sin\phi}{1 - \frac{r_s}{r_s}\cos\phi}$$
(2.113)
(2.114)

te konačno i koeficijent trenja i normalna sila:

$$\mu = \tan\left(\theta + Arc \tan\frac{\eta_r \omega_r \omega}{\omega^2 - \omega_r^2}\right)$$

$$N = m_r r_r \sqrt{\frac{(\omega^2 - \omega_r^2)^2 + \eta_r^2 \omega_r^2}{1 + \mu^2}}$$
Na sl.2.25 je prikazar

 r_r

SI.2.25. Određivanje područja whirla suhog trenja u frekventnoj domeni

0.4

 $\eta = \Omega/\omega_r$

 Ω_1

0.2

d

SI.2.26. Prijelaz iz whirla u whip suhog trenja

10 1175

$$\mu = \tan \left(\frac{\theta + Arc}{\omega^2 - \omega_r^2} \right)$$
(2.115)
$$N = m_r r_r \sqrt{\frac{\left(\omega^2 - \omega_r^2\right)^2 + \eta_r^2 \omega_r^2 \omega^2}{1 + \mu^2}}$$
(2.116)

Na sl.2.25 je prikazan izgled krivulje definirane izrazom (2.115), za određenu konfiguraciju Jeffcottovog rotora s zapinjanjem rotora o stator. Na temelju raspoloživog koeficijenta trenja između kontaktnih površina, horizontalnim presjekom 1-2, moguće je odrediti donju Ω_l i gornju graničnu kružnu frekvenciju Ω_2 natražne precesije koja se naziva whirl suhog trenja. Pri rotaciji rotora u području ispod Ω_l nemoguć je kontakt rotora i statora, a iznad Ω_2 započinje režim whirla uz suhog trenja. Za vrijeme režima whirla, pomaci rotora su relativno maleni (ne mnogo veći od radijalne zračnosti s, dok pri prijelazu u režim whipa dolazi do dramatičnog porasta veličine pomaka rotora u odnosu na radijalnu zračnost), sl.2.26. Pri radu u režimu whipa i kružna frekvencija whipa ω i pomak rotora ostaju nadalje konstantni pri povećavanju frekvencije vrtnje Ω Eksperimentalna potvrda ovih rezultata može se pronaći u [43].

> Fenomen whirla i prelaska na whip javlja se i kod kliznih ležajeva s

hidrodinamičkim ulinim filmom gdje se naziva ulini whirl(whip) [44]. Usporedba ova dva mehanizma pokazuje sličnosti ali bitne razlike. Sličnosti se ogledaju u samom fenomenu gdje u oba slučaja postoji frekventni opseg u kojem se balansirani rotor giba u režimu whirla s asinhronom kružnom frekvencijom ω koja raste prema (2.106). Osim toga u oba slučaja postoji i prijelaz ka režimu whipa, koji je praćen dramatičnim porastom amplitude pomaka rotora, te rad u režimu whipa karakteriziran konstantnom kružnom frekvencijom ω . Što se tiče razlika potrebno je zaključiti da je uljni whirl samouzbudiv dok je za startanje whirla suhog trenja potrebna određena uzbuda. Nadalje uljni whirl je karakteriziran naprednom precesijom

SI. 2.27. Kaskadni dijagram za uljni whirl i whip [45]

s kružnom frekvencijom $\omega \approx \Omega/2$ dok se whirl suhog trenja manifestira natražnom precesijom s kružnom frekvencijom $\omega \approx R_{\mu}\Omega/s$. Gornja granična kružna frekvencija uljnog whirla nalazi se blizu rotorove kritične frekvencije, sl.2.27, [45] dok se kod suhog trenja ona nalazi blizu kombinirane frekvencije rotor-stator, izraz (2.110). Posljednja bitna razlika tiče se rada u režimu whipa, gdje kod uljnog whipa s porastom frekvencije uzbude rastu i pomaci rotora dok kod suhog trenja, u režimu whipa, oni ostaju konstantni kao i kružna frekvencija whipa a.

3.Dinamika sustava materijalnih čestica i krutog tijela

Temeljne ideje klasične dinamike se općenito mogu svrstati u dvije skupine i to Newtonova i Lagrangeova dinamika.

Newtonova dinamika se temelji na konceptu ubrzanja i inercije pri čemu se pod pojmom inercije podrazumijeva svojstvo dinamičkog objekta da se opire promjeni stanja gibanja u kojemu se trenutno nalazi. Mjera promjene stanja gibanja je masa dinamičkog objekta.

Drugi koncept dinamike naziva se Lagrangeova dinamika i spada u tzv. Analitičku dinamiku. Lagrangeova se dinamika temelji na konceptu virtualnog pomaka uz uporabu skalarnih veličina kao što su mehanički rad i kinetička energija te se na temelju Hamiltonovog principa, varijacijom funkcionala, dolazi do Lagrangeovih jednadžbi gibanja. Lagrangeova dinamika zahtjeva uvođenje poopćenih koordinata umjesto fizikalnih koordinata koje se koriste kod Newtonove dinamike. Postoji nekoliko osnovnih prednosti uporabe varijacijskih principa u dinamici [46]:

- sustavi materijalnih čestica i krutih tijela se razmatraju u cijelosti umjesto da se dijele na individualne komponente,
- dinamički je problem formuliran u zavisnosti od kinetičke energije i mehaničkog rada, što su skalarne veličine,
- sile u vezama koje ne vrše rad nisu uključene u Lagrangeove jednadžbe. Ukoliko je takve sile potrebno izračunati, npr. za potrebe analize naprezanja, potrebno je upotrijebiti dodatnu formulaciju npr. Lagrangeove multiplikatore [47].

- primjena varijacijskih principa i Lagrangeove jednadžbe naročito su pogodne za vibracijske sustave koji se sastoje od većeg broja materijalnih čestica.

3.1 Neslobodno gibanje sustava materijalnih čestica

Ukoliko u sustavu ne postoje ograničenja, položaj sustava, koji se sastoji iz N materijalnih čestica, je definiran s 3N komponenata pomaka u_{ik} što u odnosu na neku referentnu konfiguraciju x_{ik} tvori novu trenutnu konfiguraciju:

$$\xi_{ik}(t) = x_{ik} + u_{ik}(x_{jk}, t)$$
(3.1)

pri čemu indeksi poprimaju sljedeće vrijednosti i,j=1,2,3, k=1,...N. Ukoliko u sustavu postoje ograničenja ona će ograničavati gibanje i stvarati zavisnost gibanja između pojedinih članova sustava. Ograničenja mogu biti holonomna ili geometrijska koja se opisuju relacijom:

$$f(\xi_{ik},t) = 0 \tag{3.2}$$

i koja ne zavise o brzinama konstitutivnih dijelova sustava te koja smanjuju broj stupnjeva slobode gibanja sustava. Drugi tip ograničenja su neholonomna ili kinematička ograničenja koja zavise i o brzinama konstitutivnih dijelova sustava te se mogu prikazati funkcijom:

$$f(\dot{\xi}_{\mu},\xi_{\mu},t) = 0 \tag{(3.3)}$$

Ovakve funkcije nisu u najvećem broju slučajeva integrabilne pa stoga ne dozvoljavaju redukciju broja stupnjeva slobode gibanja sustava.

I holonomna i neholonomna ograničenja mogu biti stacionarna ili skleronomna ukoliko su nezavisna o vremenu i nestacionarna ili reonomna ukoliko zavise o vremenu.

3.2 Pojam poopćenih pomaka i poopćenih sila

Ukoliko u sustavu koji se može opisati s 3N komponenti pomaka postoji R holonomnih ograničenja tada mu se broj stupnjeva slobode gibanja reducira na 3N-R. Stoga je potrebno definirati n=3N-R međusobno nezavisnih parametara tzv. poopćenih koordinata $(q_1...q_n)$ te se pomaci sustava materijalnih ćestica mogu prikazati pomoću ovih novih, međusobno nezavisnih koordinata

$$u_{ik}(x_{ik},t) = U_{ik}(q_1,q_2,\ldots,q_n,t)$$
(3.4)

U tom slučaju moguće je napisati virtualni pomak ovakvog sustava materijalnih čestica kao infinitezimalnu promjenu koordinata što je dopuštaju ograničenja sustava:

$$\delta u_{ik} = \sum_{x=1}^{n} \frac{\partial U_{ik}}{\partial q_x} \delta q_x \tag{3.5}$$

Za razliku od principa statičkog virtualnog rada kojeg je definirao Bernoulli za sustav u statičkoj ravnoteži, dinamički princip virtualnog rada sadrži i virtualni rad inercijskih sila koje su u dinamiku uvedene temeljem D'Alembertovog principa:

$$\delta W = \sum_{k=1}^{N} \sum_{i=1}^{3} (m_{k} \ddot{u}_{ik} - X_{ik}) \delta u_{ik}$$
(3.6)

što se, uvođenjem poopćenih koordinata može prikazati i kao:

$$\sum_{s=1}^{n} \left(\sum_{k=1}^{N} \sum_{i=1}^{3} \left(m_{k} \ddot{u}_{ik} - X_{ik} \right) \frac{\partial U_{ik}}{\partial q_{s}} \right) \delta q_{s} = 0$$

$$(3.7)$$

gdje je: m_k - masa k-te čestice sustava materijalnih čestica,

- ii_{ik} *i*-ta komponenta ubrzanja k-te čestice sustava materijalnih čestica,
- X_{ik} *i*-ta komponenta vanjske sile koja djeluje na k-tu česticu sustava materijalnih čestica.

Ukoliko se umjesto drugog člana jednadžbe (3.7) stavi izraz

$$\sum_{s=1}^{n} Q_s \delta q_s \tag{3.8}$$

(3.10)

dobiva se izraz za poopćenu silu Q_x sustava materijalnih čestica:

$$Q_s = \sum_{k=1}^{N} \sum_{i=1}^{3} X_{ik} \frac{\partial U_{ik}}{\partial q_s}$$
(3.9)

pri čemu svakoj poopćenoj koordinati s pripada poopćena sila Qs.

3.3. Hamiltonov princip za konzervativne sustave i Lagrangeove jednadžbe

Izraz za vremensku integraciju principa virtualnog rada konstitutivnog dijela sustava materijalnih čestica [48]

$$\left(\sum_{k=1}^{N}\sum_{i=1}^{3}\left(-m_{k}\ddot{u}_{ik}+X_{ik}\right)\delta u_{ik}\right)dt=0$$

gdje je s δu_{ik} označena komponenta virtualnog pomaka koja ispunjava rubne uvjete $\delta u_{ik}(t_1) = \delta u_{ik}(t_2) = 0$, naziva se Hamiltonovim principom. Hamiltonov princip jedan je od najpoznatijih i najraširenijih varijacijskih principa u mehanici.

Virtualni rad vanjskih sila moguće je u potencijalnom polju prikazati kao varijaciju potencijala δE_n :

$$\sum_{k=1}^{N} \sum_{r=1}^{3} X_{ik} \delta u_{ik} = \sum_{s=1}^{n} Q_s \delta q_s = -\delta E_p$$
(3.11)

iz čega se dobiva poznata veza između potencijala i poopćene sile kao:

$$Q_{s} = -\frac{\partial E_{p}}{\partial q_{s}}$$
(3.12)

Uvođenjem izraza za kinetičku energiju sustava materijalnih čestica:

 $E_k = \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \dot{u}_{ik} \dot{u}_{ik}$ (3.13)

jednadžba Hamiltonovog principa može se napisati :

$$\left(-\sum_{k=1}^{N}\sum_{i=1}^{3}m_{k}\dot{u}_{ik}\delta u_{ik}\right)\Big|_{t_{1}}^{t_{2}}+\delta\int_{t_{1}}^{t_{2}}(E_{k}-E_{p})dt=0$$
(3.14)

gdje, uvrštavanjem vrijednosti početnih uvjeta (virtualnih pomaka) kako je to ranije navedeno, nestaje prvi član jednakosti te se dobiva jednadžba Hamiltonovog principa:

$$\delta'_{j}\left(E_{k}-E_{p}\right)dt=0$$
(3.15)

Gornji izraz za Hamiltonov princip konzervativnih sustava sadrži virtualne pomake u_{ik} te ga je za slučaj holonomnih ograničenja potrebno prevesti u izraz koji sadrži poopćene koordinate q_s korištenjem zamjene:

$$\dot{u}_{ik} = \frac{\partial U_{ik}}{\partial t} + \sum_{s=1}^{n} \frac{\partial U_{ik}}{\partial q_s} \dot{q}_s$$
(3.16)

čime potencijalna i kinetička energija poprimaju sljedeće oblike:

$$E_{k} = E_{k}(\dot{q}, q, t)$$
 i $E_{p} = E_{p}(q, t)$ (3.17)

a početni uvjeti:

$$\delta q_s(t_1) = \delta q_s(t_2) = 0$$
 (3.18)

Varijacija kinetičke energije koja je potrebna za razvijanje jednadžbe Hamiltonovog principa glasi:

$$\delta E_{k} = \sum_{s=1}^{n} \left(\frac{\partial E_{k}}{\partial q_{s}} \delta q_{s} + \frac{\partial E_{k}}{\partial \dot{q}_{s}} \delta \dot{q}_{s} \right)$$
(3.19)

što daje sljedeću jednadžbu Hamiltonovog principa:

$$\int_{t_{s}}^{t_{s}} \int_{s=1}^{h} \left(\left(\frac{\partial E_{k}}{\partial q_{s}} + Q_{s} \right) \delta q_{s} + \frac{\partial E_{k}}{\partial \dot{q}_{s}} \delta \dot{q}_{s} \right) dt = 0$$
(3.20)

iz čega se upotrebom, parcijalne integracije posljednjeg člana i ranije definiranih početnih uvjeta, dobiva:

$$\int_{0}^{\infty} \sum_{s=1}^{n} \left(-\frac{d}{dt} \left(\frac{\partial E_{k}}{\partial \dot{q}_{s}} \right) + \frac{\partial E_{k}}{\partial q_{s}} + Q_{s} \right) \delta q_{s} dt = 0$$
(3.21)

Budući varijacija δq_{i} može poprimiti proizvoljnu vrijednost unutar vremenskog intervala za kojega se definira Hamiltonov princip, to se jednadžbe gibanja konzervativnog sustava dobivaju u obliku Lagrangeovih jednadžbi druge vrste, kako slijedi:

$$-\frac{d}{dt}\left(\frac{\partial E_k}{\partial \dot{q}_s}\right) + \frac{\partial E_k}{\partial q_s} + Q_s = 0 \qquad , \qquad s = 1, \dots, n$$
(3.22)

3.3.1 Struktura kinetičke energije

Ako se u općeniti izraz za kinetičku energiju (3.13) uvrsti veza između brzina kao derivacija pomaka i poopćenih koordinata (3.16) tada se kinetička energija (3.17) raspada na tri člana kako slijedi [21]:

$$E_{k} = E_{k}(q, \dot{q}, t) = E_{k0} + E_{k1} + E_{k2}$$
(3.23)

gdje su E_{k0} , E_{k1} i E_{k2} redom homogene funkcije reda m=0, 1 i 2 poopćenih brzina \dot{q}_s . Prvi član, za koji prema tome vrijedi m=0, iznosi:

$$E_{k0} = \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{3} m_{k} \left(\frac{\partial U_{ik}}{\partial t} \right)^{2} = E_{k0}(q,t)$$
(3.24)

naziva se transportna kinetička energija i ne zavisi o poopćenim brzinama. Drugi član predstavlja uzajamnu kinetičku energiju:

$$E_{k1} = \sum_{s=1}^{n} \sum_{k=1}^{N} \sum_{i=1}^{3} \frac{\partial U_{ik}}{\partial t} m_k \frac{\partial U_{ik}}{\partial q_s} \dot{q}_s$$
(3.25)

i uzima u obzir slučaj gdje kinetička energija ne zavisi o kvadratu poopćenih brzina \dot{q}_s . Treći član:

$$E_{k2} = \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \frac{\partial U_{ik}}{\partial q_s} \frac{\partial U_{ik}}{\partial q_r} \dot{q}_s \dot{q}_r$$
(3.26)

naziva se odnosnom kinetičkom energijom.

U cilju dodatnog razjašnjavanja pojma tipova kinetičke energije, na sl.3.1. je prikazan vibracijski sustav koji se sastoji iz bezmasnog prstena unutar koga je, sustavom opruga i viskoznim prigušivačem, pričvršćena masa m. Pri rotaciji prstena kružnom frekvencijom Ω , u pozitivnom matematičkom smjeru, bit će brzina mase m definirana kao

$$= \{v_x\} + \{v_y\} = \{\dot{x} - \Omega y\} + \{\dot{y} + \Omega x\}$$
 (3.27)

pa je kinetička energija tog vibracijskog sustava:

$$E_{s} = \frac{1}{2} m \Big((\dot{x} - \Omega y)^{2} + (\dot{y} + \Omega x)^{2} \Big)$$
(3.28)

Prema jednadžbi (3.23) ukupna se kinetička energija vibracijskog sustava raspada na tri kinetičke energije i to:

$$E_{k0} = \frac{1}{2} m \Omega^2 \left(x^2 + y^2 \right) \tag{3.29}$$

$$E_{k1} = m\Omega(x\dot{y} - y\dot{x}) \tag{3.30}$$

 $E_{kz} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$ (3.31)

3.3.2 Konzervacija energije u sustavima s skleronomnim ograničenjima

Ako su kinematička ograničenja nezavisna od vremena, kinetička se energija reducira samo na odnosnu kinetičku energiju ($E_k = E_{k2}$) tj. ona poprima homogenu kvadratnu formu poopćenih brzina. Koristići Eulerov teorem za homogene funkcije, moguće je pisati [49]:

$$2E_{k} = \sum_{s=1}^{n} \dot{q}_{s} \frac{\partial E_{k}}{\partial \dot{q}_{s}}$$
(3.32)

iz čega se, nakon diferencijacije, dobiva:

$$2\frac{\mathrm{d}E_{k}}{\mathrm{d}t} = \sum_{s=1}^{n} \dot{q}_{s} \frac{\partial E_{k}}{\partial \dot{q}_{s}} + \sum_{s=1}^{n} \dot{q}_{s} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{k}}{\partial \dot{q}_{s}}\right)$$
(3.33)

a s druge strane, razvojem kinetičke energije $E_k = E_k(q, \dot{q})$ u red slijedi:

$$\frac{\mathrm{d}E_{k}}{\mathrm{d}t} = \sum_{s=1}^{n} \ddot{q}_{s} \frac{\partial E_{k}}{\partial \dot{q}_{s}} + \sum_{s=1}^{n} \dot{q}_{s} \frac{\partial E_{k}}{\partial q_{s}}$$
(3.34)

Oduzimanjem ovih jednadžbi slijedi [50]:

$$\frac{\mathrm{d}E_{k}}{\mathrm{d}t} = \sum_{s=1}^{n} \dot{q}_{s} \left(\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{k}}{\partial \dot{q}_{s}} \right) - \frac{\partial E_{k}}{\partial q_{s}} \right) = \sum_{s=1}^{n} \dot{q}_{s} \mathcal{Q}_{s}$$

$$(3.35)$$

Konzervativne sile zavise samo od potencijala, te slijedi:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(E_{k}-E_{p}\right)=0\tag{3.36}$$

te konačno:

$$E_k + E_p = const. \tag{3.37}$$

Ovaj izraz definira zakon o sačuvanju ukupne energije u mehaničkim sustavima i predstavlja jedan od temeljnih zakona teorijske mehanike.

3.3.3. Klasifikacija poopćenih sila

Poopćene sile Q_s ćine vrlo bitan konstitutivni dio Lagrangeovih jenadžbi druge vrste (3.22). Općenito se dijele na unutarnje i vanjske generalizirane sile te na konzervativne i nekonzervativne pri čemu pojam konzervativnosti označava povratljivost pripadnog virtualnog rada.

U unutarnje sile spadaju sile veza, elastične unutarnje sile kao i unutarnje disipacijske sile. Osnovna energetska karakteristika sila veza je da je njihov virtualni rad δW jednak nuli, te one s energetskog stajališta nisu interesantne. U vanjske generalizirane sile spadaju vanjske konzervativne i vanjske nekonzervativne sile.

3.3.3.1 Elastične unutarnje sile i konzervativne vanjske sile

Oba ova tipa poopćenihnih sila spadaju u konzervativne sile. Pri tome je varijacija unutarnje energije kod unutarnjih elastičnih sila:

$$\delta E_{pmm} = \sum_{i=1}^{3} \sum_{k=1}^{N} \frac{\partial E_{pmm}}{\partial u_{ik}} \delta u_{ik}$$
(3.38)

te je poopćena sila u slučaju elastične unutarnje sile:

$$Q_{s} = -\frac{\partial E_{pann}}{\partial q_{s}}$$
(3.39)

Virtualni rad vanjskih konzervativnih sila za vrijeme jednog ciklusa (po zatvorenoj krivulji) jednak je nuli:

$$W = \oint Q_x \delta q_x = 0 \tag{3.40}$$

te je poopćena sila za slučaj vanjskih konzervativnih sila:

$$Q_s = -\frac{\partial E_{pvan}}{\partial q_s} \tag{3.41}$$

U ovu grupu spadaju poopćene sile opruga s linearnim karakteristikama, te poopćene sile uslijed težine rotora.

3.3.3.2. Poopćene sile kod vanjskog nekonzervativnog opterećenja

Ako su vanjske sile nekonzervativnog tipa tada se pripadne poopćene sile određuju uvođenjem jednadžbe virtualnih pomaka u jednadžbu virtualnog rada:

$$\delta W = \sum_{s=1}^{n} Q_s \delta q_s = \sum_{s=1}^{3} \sum_{k=1}^{N} X_{ik} \delta u_{ik} = \sum_{i=1}^{n} \sum_{k=1}^{N} \sum_{s=1}^{n} X_{ik} \frac{\partial U_{ik}}{\partial q_s} \delta q_s$$
(3.42)

iz čega slijedi poopćena sila za slučaj nekonzervativnog vanjskog opterećenja, gdje spada i sila trenja:

$$=\sum_{i=1}^{3}\sum_{k=1}^{N}X_{ik}\frac{\partial U_{ik}}{\partial q_{k}}$$
(3.43)

a balans snage ovakvog nekonzervativnog sustava glasi:

Q.

$$\frac{d}{dt}\left(E_{k}+E_{p}\right)=\sum_{s=1}^{N}Q_{s}\dot{q}_{s}$$
(3.44)

Prema preporukama u literaturi [51] sile nastale zbog interakcije osovine rotora i strukture koja osovinu okružuje (ležaj, brtve, itd.) spadaju u vanjske nekonzervativne sile te u Lagrangeovu jednadžbu ulaze u obliku poopćenih sila u skladu s izrazom (3.43).

3.3.3.3. Unutarnje disipacijske sile

Nekonzervativni dinamički sustavi uključuju disipaciju energije. Oslobođena energija iz sustava ili zrači uokolo (npr. u obliku buke) ili se pretvara u toplinu. Gubitak energije je uobičajeno povezan s opadanjem amplitude vibracija, što se kod ravnomjernih vibracija uravnotežuje uvođenjem nove energije u sustav putem uzbude.

Nekako je najjednostavniji mehanizam disipacije energije viskozno prigušenje budući se relativno jednostavno dade matematički opisati linearnom ovisnošću sile viskoznog otpora o brzini gibanja. Ostali mehanizmi disipacije energije, kao što su trenje, fluidno prigušenje (ovisno o kvadratu brzine) ili pak strukturalno prigušenje, nešto su složeniji. Mnogi od mehanizama disipacije u materijalima još su složeniji jer mogu nastati kao posljedica kombinacije nekih od navedenih mehanizama.

Zbog toga se često, u proračunima prigušenih vibracija koristi tzv. ekvivalentni omjer prigušenja ζ_e i ekvivalentno viskozno prigušenje c_e kako bi se usporedio gubitak energije po vibracijskom ciklusu mehanizama neviskoznog prigušenja s isto takvim gubitkom energije kod viskoznog prigušenja. Također su bitni pojmovi opisivanja pojedinih mehanizama disipacije i energija disipacije E_d , koja prikazuje gubitak vibracijske energije po jednom ciklusu, te disipacijska funkcija D [52], koja je pandam potencijalnoj energiji kod konzervativnih sustava a koristi se pri dobivanju diferencijalnih jednadžbi gibanja Hamiltonovim principom. Veza disipacijske funkcije D i poopćene sile Q_s može se prikazati sljedećim izrazom:

$$Q_s = -\frac{\partial D}{\partial \dot{q}_s} \tag{3.45}$$

a osim u proces formiranja Lagrangeovih jednadžbi gibanja disipacijska funkcija D ulazi i u jednadžbu balansa snage koja sada glasi:

-m=1

- m=2

- m=3

$$\frac{d}{dt}\left(E_{k}+E_{p}\right)=-mD\tag{3.46}$$

gdje je s m označen red disipacijske funkcije koji iznosi:

suho trenje, viskozno prigušenje, fluidno prigušenje i aerodinamički otpori

40

3.3.3.3.1. Energija disipacije viskoznog prigušenja

Kod jednostavnog oscilatora s jednim stupnjem slobode gibanja, za silu viskoznog prigušenja $F_{vp} = c\dot{x}$ ova se energija dobiva sumiranjem diferencijalnih energija disipacija unutar jednog vremenskog ciklusa [53]:

$$E_d = \oint c\dot{x}dx = c \int \dot{x}^2 dt \tag{3.47}$$

gdje je:

1 3 3 4 4 A 4

 τ - period jednog vibracijskog ciklusa, x - stupanj slobode gibanja oscilatora,

c - koeficijent viskoznog prigušenja.

Imajući u vidu rješenje diferencijalne jednadžbe gibanja koje se odnosi na ustaljene vibracije kao i izraz za amplitudu x_a prisilnih vibracija jednostavnog oscilatora s prigušenjem, dobiva se sljedeći izraz:

$$E_{d} = \frac{1}{2} c x_{u}^{2} \omega^{2} \int_{0}^{2\pi/\omega} (1 + \cos 2(\omega t - \psi)) dt$$
(3.48)

u kojem je: ω - kružna frekvencija vibracija,

 ψ - fazni kut vibracija.

Integracijom prethodnog izraza može se dobiti:

$$E_d = \pi c x_a^2 \omega \tag{3.49}$$

pri čemu u području rezonancije, gdje prigušenje ima najveći utjecaj na odziv, vrijedi sljedeći izraz za energiju disipacije:

$$E_d = \pi 2\zeta k x_a^2 \tag{3.50}$$

uz korištenje sljedećih oznaka:

 ζ - omjer prigušenja,

k-krutost vibracijskog sustava.

Disipacijska funkcija za slučaj viskoznog prigušenja iznosi:

$$D = \frac{c\dot{x}^2}{2} \tag{3.51}$$

3.3.3.3.2. Energija disipacije fluidnog prigušenja

Prigušenje ovisno o kvadratu brzine se najčešće koristi za opisivanje disipativnog mehanizma vibracijskog sustava koji izvodi vibracije u fluidnom mediju. Takva se sila prigušenja može prikazati na sljedeći način [54]:

$$F_{fp} = \pm \frac{C\rho A}{2} \dot{x}^{2} = -\alpha |\dot{x}| \dot{x}$$
(3.52)

Pri tome je:

C – koeficijent otpora, ρ - gustoća fluida,

A – projekcija vibracijskog tijela na ravninu okomitu na pravac brzine \dot{x} , α - koeficijent fluidnog prigušenja. Diferencijalna jednadžba gibanja ovakvog oscilatora je nelinearna. Međutim za određivanje najbitnijih vibracijskih veličina ovakvog sustava nije potrebno rješavati nelinearnu jednadžbu, već ih se sve može dobiti korištenjem ekvivalentnog viskoznog prigušenja.

Energija disipacije unutar jednog vremenskog ciklusa za silu fluidnog prigušenja definiranu izrazom (3.52) je:

$$\mathcal{E}_d = 2\alpha \int_0^{\pi/\omega} \dot{x}^3 dt \tag{3.53}$$

Sličnim postupkom kao i kod viskoznog prigušenja slijedi integralna verzija energije disipacije za jedan vibracijski ciklus:

$$E_d = 2\alpha x_a^3 \omega^3 \int_{0}^{\pi/\omega} \sin^3(\omega t - \psi) dt$$
(3.54)

što integracijom daje:

 $E_d = \frac{8}{2} \alpha x_a^3 \omega^2. \tag{3.55}$

Rezonantna energija disipacije prema tome iznosi:

$$E_d = \frac{8}{3}\alpha x_a^3 \frac{k}{m} \tag{3.56}$$

što usporedbom s rezonantnom energijom disipacije viskoznog prigušenja daje ekvivalentni omjer viskoznog prigušenja ζ_s :

 $\zeta_e = \frac{4\alpha x_a}{3\pi m} = \frac{2C\rho A x_a}{3\pi m}.$ (3.57)

U prethodnom sustavu *m* predstavlja masu vibracijskog sustava. Ekvivalentno viskozno prigušenje c_e dobiva se na temelju poznatog izraza $c_e = 2\zeta_e \sqrt{km}$ te za fluidno prigušenje iznosi:

$$c_e = \frac{8}{3\pi} \alpha \omega x_a \,. \tag{3.58}$$

Ovdje je disipacijska funkcija D jednaka:

 $D = \frac{\alpha \dot{x}^3}{3}.$ (3.59)

3.3.3.3.Energija disipacije suhog trenja

Energija disipacije suhog (Coulombovog) trenja nastaje kao rezultat međusobnog klizanja dvaju suhih površina. Sila prigušenja je jednaka umnošku normalne sile i koeficijenta trenja μ te se pretpostavlja njezina nezavisnost o brzini jednom kada se klizanje počne odvijati [55]:

$$F_d = T = \pm \mu N \tag{3.60}$$

Ova sila djeluje u toku jednog vibracijskog ciklusa na putu $s=4x_a$. Energija disipacije u tom slučaju iznosi:

$$=4x_aT \tag{3.61}$$

i neovisna je o rezonanciji. Usporedbom s energijom disipacije viskoznog prigušenja dobiva se ekvivalentno viskozno prigušenje:

$$=\frac{4T}{\pi x \ \omega} \tag{3.62}$$

kao i ekvivalentni omjer prigušenja za suho trenje:

$$\zeta_e = \frac{2T}{\omega_n m \pi x_a \omega} \tag{3.63}$$

Disipacijska funkcija u slučaju suhog trenja kao mehanizma disipacije energije iznosi:

 E_d

Ċ

$$D = \mu N \dot{x} \,. \tag{3.64}$$

3.3.3.3.4. Strukturno prigušenje

Pod strukturnim prigušenjem podrazumijeva se disipacija energije u materijalima struktura koje su podvrgnute cikličkim naprezanjima. Ovo se prigušenje još naziva i histeretskim prigušenjem. Eksperimentalne studije [56] pokazuju da energija disipacije po jednom ciklusu za metale, kao što su aluminij i čelik kao najčešći materijali struktura u strojarstvu, ovisi o kvadratu deformacije za mala naprezanja ali što je najbitnije ne ovisi o frekvenciji. Energija disipacije neravnomjerno opterećenih vibracijskih objekata ovisi nelinearno i o naprezanju u materijalu pri čemu je vrijednosti prigušenja u neravnomjerno opterećenim materijalima vibracijskih objekata (turbinskih lopatica) moguće odrediti kombinirano proračunima, na temelju teorijskih postavki i eksperimentalno, mjerenjem na modelima, [57].

Energija disipacije linearnog strukturnog prigušenja može se napisati kao [56]:

$$E_d = \gamma \chi_a^2 \tag{3.65}$$

gdje je γ konstanta strukturnog prigušenja. Ovo prigušenje se najčešće koristi preko izraza krutost vibracijskog sustava na način da se uvodi pojam tzv. kompleksne krutosti k^* tj. kompleksnog Youngovog modula elastičnosti E^* :

$$E^* = E\left(1+j\frac{\gamma}{\pi k}\right)$$
 i $k^* = k\left(1+j\frac{\gamma}{\pi k}\right)$. (3.66)

U prethodnom izrazu *j* označava imaginarnu jedinicu. Ekvivalentno viskozno prigušenje dobiva se usporedbom energije disipacije strukturnog prigušenja s energijom disipacije viskoznog prigušenja:

5.

$$c_e = \frac{\gamma}{\pi \omega} \tag{3.67}$$

a za ekvivalentni omjer prigušenja se dobiva:

$$=\frac{\gamma}{2\pi k}\,.\tag{3.68}$$

3.4. Lagrangeove jednadžbe u općenitom slučaju

U općenitom slučaju nekonzervativnog sustava materijalnih čestica s reonomnim ograničenjima Lagrangeove jednadžbe gibanja mogu biti napisane na sljedeći način [58]:

$$-\frac{d}{dt}\left(\frac{\partial E_{k}}{\partial \dot{q}_{s}}\right) + \frac{\partial E_{k}}{\partial q_{s}} - \frac{\partial E_{p}}{\partial q_{s}} - \frac{\partial D}{\partial \dot{q}_{s}} + Q_{s} = 0 \qquad , \qquad s = 1, \dots, n$$
(3.69)

3.4.1. Dinamika ležaja s suhim trenjem

SI.3.2. Rotor u ležajevima s suhim trenjem

Ležaj s suhim trenjem predstavlja nekonzervativni dinamički sustav. Na sl. 3.2 prikazan je rotor poduprt s dva takva ležaja, u stanju mirovanja. Takav je vibracijski sustav modeliran kao sustav od pet materijalnih čestica, rotoru pripadaju tri materijalne čestice 1...3, a svakom ležaju po jedna materijalna čestica (4 i 5). Globalni koordinatni sustav označen je s (X-Y-Z), a s $q_1...q_{15}$ su označene poopćene koordinate, pri čemu svakoj materijalnoj čestici odgovaraju tri poopćene ne koordinate. Na sl. 3.3 je nadalje prikazana situacija u ležaju s suhim trenjem 4, s kojim materijalna čestica 1 dolazi u kontakt, pri rotorovom precesijskom gibanju.

SI.3.3, Ležaj s suhim trenjem

Nekonzervativnu poopćenu silu dodira moguće je, kao što je ranije spomenuto, prikazati pomoću izraza (3.43). Budući ovaj sustav materijalnih čestica nema ograničenja gibanja, to svakoj fizikalnoj koordinati x_{lk} odgovara jedna poopćena koordinata q_x pa će na temelju izraza (3.43) i svakoj fizikalnoj komponenti sile X_{lk} odgovarati jedna poopćena sila Q_s . Dakle, budući vrijedi $x_{1/2}=q_1$, $x_{2/2}=q_2$,

 $x_{31}=q_3, x_{12}=q_4, \dots, x_{35}=q_{15}$, to će vrijediti i $X_{11}=Q_1, X_{21}=Q_2, X_{31}=Q_3, X_{12}=Q_4, \dots, X_{35}=Q_{15}$ te se konačno dobiva:

$$Q_{1} = Q_{7} = -Q_{10} = -Q_{13} = -N\cos\gamma + T\sin\gamma, \quad Q_{2} = Q_{8} = -Q_{11} = -Q_{14} = -N\cos\gamma - T\sin\gamma, \quad (3.70)$$

$$Q_{3,...}Q_{6} = 0, \quad Q_{9} = 0, \quad Q_{12} = 0, \quad Q_{15} = 0.$$

Disipacijska funkcija za viskozni prigušivač, prema jednadžbi (3.51) iznosi:

$$D_{yy4} = \frac{1}{2} \left(c_x \dot{q}_{10}^2 + c_y \dot{q}_{11}^2 \right) \tag{3.71}$$

Nadalje, opruga je konzervativni element čija je potencijalna energija za ležaj s suhim trenjem 4:

$$E_{p4} = \frac{1}{2} \left(k_x q_{10}^2 + k_y q_{11}^2 \right)$$
(3.72)

Kinetička energija ležaja s suhim trenjem 4, mase m_4 , je:

$$E_{k4} = \frac{1}{2} m_4 \left(\dot{q}_{10}^2 + \dot{q}_{11}^2 \right) \tag{3.73}$$

Korištenjem izraza za Lagrangeove jednadžbe nekonzervativnih sustava (3.69), dobivaju se jednadžbe gibanja ležaja s suhim trenjem kako slijedi:

$$m_{4}\ddot{q}_{10} + c_{x}\dot{q}_{10} + k_{x}q_{10} = N\cos\gamma - T\sin\gamma$$

$$m_{4}\ddot{q}_{11} + c_{y}\dot{q}_{11} + k_{y}q_{11} = N\sin\gamma + T\cos\gamma$$
(3.74)

Dobiveni izrazi odgovaraju dijelu izraza (2.87) koji se odnose na jednadžbe gibanja statora. Kasnije, u poglavlju 5 će biti definiran konačni element pod nazivom ležaj s suhim trenjem u kojim će biti obuhvaćen i rotorski dio (materijalna čestica 1)

3.5. Dinamika krutog tijela i kinetička energija krutog diska

lako se diskovi, kao sastavni dijelovi konfiguracije turbostrojeva, mogu promatrati kao osovine(grede) dominantnih promjera u odnosu na njihove duljine (za razliku od različitih modela osovina(greda) gdje je duljina dominantna u odnosu na promjer), njihova je kinetička energija dominantna u odnosu na potencijalnu energiju. Stoga se pri modeliranju vibracijsko ponašanje diskova opisuje ponašanjem krutog tijela. Na sl. 2.4 prikazan je disk rotora čiju je kinetičku energiju i jednadžbe gibanja potrebno definirati. Definirana su dva koordinatna sustava i to fiksni koordinatni sustav (X-Y-Z) i pomični koordinatni sustav vezan uz disk (x-y-z). Veza između fiksnog i pomičnog koordinatnog sustava definirana je Eulerovim kutovima β_x , β_y i Φ .

Ukupna kutna brzina krutog tijela koje izvodi sferno gibanje iznosi:

$$\{\omega\} = \dot{\beta}_x \{i_x\} + \dot{\beta}_y \{i_y\} + \dot{\Phi}\{i_z\}$$

$$(3.75)$$

gdje su $\{i_{\lambda}\}, \{i_{\lambda}\}$ i $\{i_{\lambda}\}$ jedinični vektori u smjeru osi koje se nalaze navedene u indeksima.

Kinetička energija diska se računa oko njegovog centra masa u lokalnom koordinatnom sustavu te je stoga potrebno projicirati brzine promjena Eulerovih kutova na osi lokalnog koordinatnog sustava. Na taj se način dobiva :

$$\{\omega\} = \begin{cases} \omega_x \\ \omega_y \\ \omega_z \end{cases} = \begin{cases} \dot{\beta}_x \sin \beta_y \sin \Phi + \dot{\beta}_y \cos \Phi \\ \dot{\beta}_x \sin \beta_y \cos \Phi - \dot{\beta}_y \sin \Phi \\ \dot{\beta}_x \cos \beta_y + \dot{\Phi} \end{cases}$$
(3.76)

Neka su u i v koordinate centra masa diska u globalnom koordinatnom sustavu (X-Y-Z) dok se koordinata w uzduž osi Z ne mijenja. Ako je m_D masa diska, a J_x , J_y i J_z su maseni momenti inercije diska za osi lokalnog koordinatnog sustava, tada je moguće dobiti kinetičku energiju diska kako slijedi:

$$E_{kD} = \frac{1}{2} m_D \left(\dot{u}^2 + \dot{v}^2 \right) + \frac{1}{2} \left(J_x \omega_x^2 + J_y \omega_y^2 + J_z \omega_z^2 \right)$$
(3.77)

koji se uvrštavanjem izraza (3.75) te uzimanjem u obzir izraza $J_x = J_y$, $(\beta_x, \beta_y) \langle \langle 1, \dot{\phi} = \Omega,$ transformira u [59]:

$$E_{kD} = \frac{1}{2} m_D \left(\dot{u}^2 + \dot{v}^2 \right) + \frac{1}{2} J_a \left(\dot{\beta}_x^2 + \dot{\beta}_y^2 \right) + \frac{1}{2} J_p \left(\Omega^2 + 2\Omega \dot{\beta}_x \beta_y \right)$$
(3.78)

Prvi član izraza za kinetičku energiju diska odnosi se na translaciju diska, drugi na rotaciju diska oko poprečnih osi, prvi pribrojnik posljednjeg člana na rotaciju diska oko uzdužne osi diska, dok se drugi pribrojnik posljednjeg člana odnosi na giroskopski (Coriolisov) efekt.

4. Jednadžbe elastomehanike raspodijeljenih sustava

Nekada su se za modeliranje vibracijskih sustava koristili diskretizirani elementi, tj. kruta tijela čije je jedino fizikalno svojstvo bilo masa, povezana pomoću opruga ili disipativnih elemenata koji su bili karakterizirani samo koeficijentima krutosti ili prigušenja, ali bez inercije.

U praksi, prikaz fizikalnog sustava pomoću diskretnog modela je idealizirani pogled. Tijela koja čine mehanički sustav su uobičajeno deformabilna i elastični elementi (opruge) koji povezuju glavna tijela također imaju svoju vlastitu inerciju. Dakle, svaki konstitutivni dio sustava posjeduje vlastita svojstva inercije, krutosti i prigušenja, te je za modeliranje takvog sustava, ili dijela takvog sustava, potrebno rabiti matematički model raspodijeljenog sustava pod vremenski ovisnom deformacijom, kakav je opisan u elastodinamici.

Za modeliranje konstitutivnih jednadžbi raspodijeljenih sustava, potrebno je koristiti se teorijom mehanike kontinuuma gdje su jednadžbe gibanja prikazane u funkciji polja pomaka:

$$u = u(x, y, z, t), \quad v = v(x, y, z, t), \quad w = w(x, y, z, t)$$
(4.1)

zajedno s rubnim uvjetima koji moraju biti zadovoljeni. Budući su prostorne varijable x, y i z kontinuirane, to opisani sustav posjeduje beskonačno mnogo stupnjeva slobode gibanja.

 $S=S_u+S_{\sigma}$

4.1. Kinematički opis dinamičkog ponašanja raspodijeljenih sustava

49

Na sl. 4.1 je prikazano elastično tijelo koje se nalazi u određenom gibanju koje je vremenski zavisno i trenutni se položaj mjeri u odnosu na neđeformiranu konfiguraciju. Nedeformirana konfiguracija se smatra vremenski neovisnom i odgovara ravnotežnom položaju u odsutnosti vanjskih sila, te se prema Lagrangeovom opisu gibanja uzima za referentnu konfiguraciju. Prema slici 4.1 moguće je definirati sljedeće

volumen elastičnog tijela u deformiranoj konfiguraciji, volumen elastičnog tijela u nedeformiranoj konfiguraciji, Descartesove koordinate dane čestice nedeformiranog tijela (gdje god je moguće koristi se zapis $\{x \ y \ z\}$ umjesto $\{x_1 \ x_2 \ x_3\}$),

polje pomaka promatrano u čestici *i* tijela kao rezultat dinamičke deformacije tijela (indeks *j* je korišten za tri Descartesove koordinate, a gdje god je moguće također se uobičajeno koristi zamjena $\{u v w\}$ umjesto $\{u_1 \ u_2 \ u_3\}$),

ukupna površina tijela nedeformirane konfiguracije podijeljena na:

 S_u - dio površine na kojoj su zadani pomaci:

 $\{u\}_i = \{\overline{u}\}_i$

S_{σ} - preostali dio površine na kojoj su zadane površinsk sile gustoće $\{g\}_{i} = \{\overline{g}\}_{i}$
vektor poznatih tjelesnih sila u čestici i tijela
vektor kosinusa kutova normale površine S u čestici i.

Kako bi se mogao definirati Hamiltonov princip za raspodijeljeni sustav, potrebno je prvo definirati energiju deformacije kontinuuma, a da bi se to moglo ostvariti potrebno je definirati deformaciju.

4.2. Green-Lagrangeov tenzor deformacije

50

 $\{\overline{X}\}_{n}$

SI. 4.2. Geometrija prostorne deformacije

zauzimaju nove položaje prema slici 4.2., $A^*(\{x\}_i+\{u\}_i), B^*(\{x\}_i+\{u\}_i+d(\{x\}_i+\{u\}_i)))$. Ako su ds₀ i ds duljine segmenta \overline{AB} prije i nakon deformacije tada iz slike 4.2 slijedi, uz korištenje

Einsteinove notacije kod koje ponavljanje jednog indeksa unutar produkta podrazumijeva sumaciju po tom indeksu [60]:

$$ds_{a}^{2} = dx_{1} dx_{1} + dx_{2} dx_{2} + dx_{3} dx_{3} = \sum_{i=1}^{3} dx_{i} dx_{i} = dx_{i} dx_{i};$$

$$ds^{2} = \sum_{i=1}^{3} d(x_{i} + u_{i}) d(x_{i} + u_{i}) = d(x_{i} + u_{i}) d(x_{i} + u_{i}).$$
(4.2)

Ako se pri tome, imajući na umu da indeksi uvijek poprimaju vrijednost 1...3, uzme u obzir:

$$\mathrm{d}u_i = \frac{\partial u_i}{\partial x_i} \mathrm{d}x_i, \tag{4.3}$$

Prostorna deformacija kontinuuma u svakoj

čestici volumena definira se u odnosu na nedeformiranu konfiguraciju za materijalnu

česticu A s vektorom koordinata $\{x\}_i$ prije

deformacije. Ovakvo definiranje deformacije

se razlikuje u odnosu na Eulerovo gdje se

deformirana konfiguracija uzima za referentnu.

Neka je druga promatrana čestica B, koja se

nalazi u neposrednoj blizini čestice A s

koordinatama $\{x\}$ +d $\{x\}$, u nedeformiranom

stanju. Nakon deformacije, čestice A i B

tada, u skladu s pravilom da se indeks u svakom članu sume ne smije pojaviti tri ili više puta [61], slijedi:

$$ds^{2} = \left(dx_{i} + \frac{\partial u_{i}}{\partial x_{j}}dx_{j}\right)\left(dx_{i} + \frac{\partial u_{i}}{\partial x_{m}}dx_{m}\right) = dx_{i}dx_{i} + \frac{\partial u_{i}}{\partial x_{j}}dx_{i}dx_{i} + \frac{\partial u_{i}}{\partial x_{m}}dx_{m}dx_{i} + \frac{\partial u_{i}}{\partial x_{j}}\frac{\partial u_{i}}{\partial x_{m}}dx_{j}dx_{m};$$

$$ds^{2} = dx_{i}dx_{i} + \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} + \frac{\partial u_{m}}{\partial x_{j}}\frac{\partial u_{m}}{\partial x_{i}}\right)dx_{i}dx_{j}.$$

$$(4.4)$$

Na temelju ovog izraza moguće je definirati Green - Lagrangeov tenzor deformacije ε_{i} na

način da se prirast udaljenosti AB prikaže na sljedeći način:

$$ds^2 - ds_0^2 = 2\varepsilon_0 dx_0 dx_0, \qquad (4.5)$$

nakon čega bi uslijedilo

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_j} + \frac{\partial u_m}{\partial x_i} \frac{\partial u_m}{\partial x_j} \right).$$
(4.6)

što na osnovu Einsteinove konvencije može biti kraće pisano kao [62]:

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,j} + u_{m,j} u_{m,j} \right)$$
(4.7)

Dobiveni izrazi za komponente tenzora deformacije, kao simetričnog tenzora drugog reda, vezani su uz određenu česticu kontinuuma i povezuju deformacije, polje pomaka i Descartesove koordinate te čestice. Green - Lagrangeov tenzor deformacije još se naziva i materijalni tenzor deformacije dok je s druge strane, temeljeno na Eulerovom opisu gibanja, moguće dobiti i tzv. prostorni tenzor deformacije u koji spada Almansijev tenzor deformacije. Matematičku vezu između materijalnog i prostornog tenzora deformacije moguće je izraziti na osnovi jednostavnih operacija tenzorskog računa.

U ovom radu će biti korištena teorija malih deformacija, kod koje je moguće kvadrat deformacije zanemariti u odnosu na samu deformaciju. Ukoliko se za komponente vektora pomaka i vektora Descartesovih koordinata uzme uobičajena notacija $\{u\}=\{u v w\}^T$ i $\{x\}=\{x y z\}^T$ dobivaju se sljedeće komponente deformacije kao funkcije komponenata pomaka i Descartesovih koordinata:

$$\varepsilon_{x} = \frac{\partial u}{\partial x} \quad ; \quad \gamma_{xy} = \gamma_{yx} = 2\varepsilon_{xy} = 2\varepsilon_{yy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} \quad ; \quad \gamma_{yz} = \gamma_{zy} = 2\varepsilon_{yz} = 2\varepsilon_{zy} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}$$

$$\varepsilon_{z} = \frac{\partial w}{\partial z} \quad ; \quad \gamma_{xz} = \gamma_{zx} = 2\varepsilon_{xz} = 2\varepsilon_{zy} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$$
(4.8)

Uobičajeno se dobivene komponente tenzora deformacije slažu u matricu tenzora deformacije koja je za trodimenzionalni Descartesov prostor oblika:

 $\begin{bmatrix} \boldsymbol{\varepsilon} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon}_{v} & \boldsymbol{\varepsilon}_{vy} & \boldsymbol{\varepsilon}_{vz} \\ \boldsymbol{\varepsilon}_{yx} & \boldsymbol{\varepsilon}_{y} & \boldsymbol{\varepsilon}_{yz} \\ \boldsymbol{\varepsilon}_{zx} & \boldsymbol{\varepsilon}_{zy} & \boldsymbol{\varepsilon}_{z} \end{bmatrix}, \quad (4.9)$

4.3. Veza naprezanje - deformacija

Sl. 4.3. Veza naprezanje – deformacija

U tehnici se uobičajeno koriste materijali čije je osnovno svojstvo da mogu mehanički rad naprezanja pohraniti unutar strukture materijala

u obliku unutarnje energije. Takvi su materijali karakterizirani funkcijom naprezanja:

 $\sigma_{ij} = f(\varepsilon_{kl}) \tag{4.10}$

što može biti ilustrirano, za jednodimenzionalni slučaj u obliku dijagrama, na sl. 4.3.

Infinitezimalni prirast deformacije d ε_0 pri stanju naprezanja σ_0 u nekoj čestici kontinuuma izazvati će infinitezimalni prirast energije deformacije dW, koji za jedinični volumen može biti prikazan kako slijedi:

$$\mathrm{d}W = \sigma_{ij} \,\mathrm{d}\varepsilon_{ij} \tag{4.11}$$

te se stoga energija deformacije može prikazati kao

$$W(\varepsilon_{\eta}) = \int_{0}^{\varepsilon_{\eta}} \sigma_{\eta} d\varepsilon_{\eta} \,. \tag{4.12}$$

Energiji deformacije pripadna naprezanja moguće je dobiti diferencijacijom:

$$\sigma_{y} = \frac{\partial W}{\partial \varepsilon_{y}} \tag{4.13}$$

Na taj način definirani tenzor naprezanja je energetski povezan s Green-Lagrangeovim tenzorom deformacije. Uobičajeno se naziva drugi Piola-Kirchhoffov tenzor ili Kirchhoff-Trefftzov tenzor, [63]. Ovaj tenzor ne prikazuje stvarna naprezanja (kao npr. Cauchyjev tenzor naprezanja) u jediničnom volumenu u deformiranoj konfiguraciju, već u jediničnom volumenu s obzirom na nedeformiranu konfiguraciju. U jednodimenzionalnom slučaju, sl. 4.3., intenzitet energije deformacije može biti mjeren površinom između krivulje naprezanje-deformacija i osi deformacije.

Intenzitet komplementarne energije W materijala, za jedinični volumen, se definira na sličan način kao površina između krivulje naprezanje-deformacija i osi naprezanja, te se matematički može prikazati kao:

$$V^* = \sigma_{ij} \varepsilon_{ij} - W \tag{4.14}$$

i može biti dobiven iz Legendreovih transformacija između konjuguranih varijabli σ_{ij} i ε_{ij} . Intenzitet komplementarne energije jedino je funkcija stanja naprezanja:

$$W^*(\sigma_{\eta}) = \int_{\varepsilon_{\eta}}^{\sigma_{\eta}} \varepsilon_{\eta} d\sigma_{\eta}$$
(4.15)

Ukoliko materijal ima linearno elastična svojstva tada mu je svaka od devet komponenti naprezanja proporcionalna svakoj od devet komponenti deformacije, te se takva veza u tenzorskom obliku može napisati kao:

$$\sigma_0 = C_{ijkl} \, \varepsilon_{kl} \tag{4.16}$$

gdje je C_{qkl} tenzor elastičnosti te je intenzitet potencijalne energije deformacije:

$$W = \frac{1}{2} C_{\eta k l} \varepsilon_{\eta} \varepsilon_{k l} \,. \tag{4.17}$$

Pri tome je tenzor elastičnosti izotropni tenzor četvrtog reda [61] te posjeduje samo dvije nezavisne komponente koje se nazivaju Lameovim konstantantama koje glase:

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$$
 i $G = \frac{E}{2(1+\nu)}$. (4.18)

Za izotropna svojstva materijala, nadalje, vrijedit će Hookov zakon koji može biti prikazan u tenzorskom zapisu:

$$\sigma_{ij} = \lambda (\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}) \delta_{ij} + 2G\varepsilon_{ij} = \lambda \varepsilon_{kk} + 2G\varepsilon_{ij}$$
(4.19)

Prvi član u izrazu za (4.19) definira sferni dio tenzora naprezanja zbog volumetričke dilatacije (promjena volumena bez promjene oblika), dok je drugi član devijatorski dio tenzora naprezanja vezan uz smične deformacije (promjena oblika bez promjene volumena).

Komponente tenzora naprezanja, također se, uobičajeno, slažu u matricu tenzora naprezanja koja je za trodimenzionalni Descartesov prostor oblika :

$$[\sigma] = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{bmatrix}.$$
(4.20)

4.4. Hamiltonov princip za raspodijeljene sustave

Hamiltonov princip ili princip najmanjeg djelovanja za raspodijeljeni vibracijski sustav unutar dva vremenska trenutka t_1 i t_2 , koji odgovaraju položajima 1 i 2 na putanji u skladu s ograničavajućim uvjetima

$$\delta\{u(t_1)\} = \delta\{u(t_2)\} = 0, \tag{4.21}$$

definira se kao prijelaz iz početnog stanja 1 u konačno stanje 2, po putanji koja minimizira sljedeći funkcional:

$$\delta \int_{t_1}^{t_2} L(\{u\}) dt + \int_{t_1}^{t_2} \delta W_{nk} dt = \delta \int_{t_1}^{t_2} (E_k - E_p) dt + \int_{t_2}^{t_2} \delta W_{nk} dt$$
(4.22)

gdje je:

 E_k - ukupna kinetička energija raspodijeljenog sustava,

- E_p potencijalna energija raspodijeljenog sustava, uključujući energiju deformacije i
 - potencijalnu energiju konzervativnih vanjskih sila,
- L Lagrangeova funkcija (Lagranžijan),
- δ simbol koji označava prvu varijaciju ili virtualnu promjenu,
- W_{nk} virtualni rad nekonzervativnih sila, uključujući sile prigušenja, nelinearne sile i vanjske sile koje nisu uzete u obzir kod E_p ,
- dt diferencijal vremena,
- $\{u\}$ vektor pomaka.

Kinetička i potencijalna energija složene su funkcije polja pomaka i njihovih vremenskih derivacija kao i derivacija po prostornim koordinatama:
$$= E_{k}(\{u\},\{\dot{u}\},\{\dot{u}'\},\{\dot{u}'\}) \quad , \quad E_{p} = E_{p}(\{u\},\{u'\},\{u''\})$$

$$(4.23)$$

dok se virtualni rad nekonzervativnih sila može prikazati kao:

$$\delta W_{uk} = \int_{V_{u}} P_{i} \delta u_{i} \mathrm{d} V \tag{4.24}$$

gdje su s P_i označene nekonzervativne sile.

 E_{i}

Kinetička energija raspodijeljenog sustava na sl.4.1. može se dobiti integracijom po cjelokupnom volumenu, te u skladu s Einsteinovom konvencijom poprima oblik:

$$E_{k} = \frac{1}{2} \int_{V_{0}} \rho \, \dot{u}_{i} \dot{u}_{j} \, \mathrm{d}V \, . \tag{4.25}$$

Ukupna potencijalna energija E_p je suma energije deformacije kontinuuma i potencijalne energije vanjskih konzervativnih sila što može biti napisano kao:

$$E_p = E_{punu} + E_{pvan} \tag{4.26}$$

Potencijalna energija deformacije kontinuuma dobiva se iz energije deformacije kontinuuma za jedinični volumen $W(\varepsilon_0)$ i iznosi:

$$E_{pumu} = \int_{V_0} W(\varepsilon_{ij}) \,\mathrm{d}V \tag{4.27}$$

dok se potencijalna energija vanjskih konzervativnih sila sastoji iz rada tjelesnih sila $\{\overline{X}\}$, te rada površinskih sila gustoće $\{\overline{g}\}_i$ na dijelu površine S_{σ} i jednaka je:

$$E_{pvan} = -\int_{V_0} \overline{X}_i(t) u_i \mathrm{d}V - \int_{S_a} \overline{g}_i(t) u_i \mathrm{d}S$$
(4.28)

Rješenje varijacijskog problema (4.22) je polje pomaka koje u prvom redu zadovoljava geometrijske (kinematičke) rubne uvjete $\{u\}_i = \{\overline{u}(t)\}_i$, na⁻cjelokupnom području definicije S_u kao i ograničavajuće uvjete (4.21).

Primjenom Hamiltonovog principa za raspodijeljeni sustav moguće je odrediti jednadžbe gibanja raspodijeljenog sustava što će ovdje, zbog jednostavnosti biti izvedeno za konzervativni sustav tj. sustav čija se varijacijska formula (4.22) sastoji samo od prvog člana, uz $\delta W_{nk}=0$. Uvrštavanjem izraza za kinetičku i ukupnu potencijalnu energiju u jednadžbu (4.22) te provođenjem postupka diferenciranja, dobiva se:

$$\delta_{i_{1}}^{i_{2}}L(\{u\})dt = \int_{i_{1}}^{i_{2}} \left(\int_{V_{0}} \left(\rho \dot{u}_{i} \delta \dot{u}_{i} - \frac{\partial W}{\partial \varepsilon_{y}} \delta \varepsilon_{y} + \overline{X}_{i} \delta u_{i} \right) dV + \int_{S\sigma} \overline{g}_{i}(t) \delta u_{i} dS \right) dt$$

$$(4.29)$$

Nad ovom jednadžbom se provodi integriranje po članovima kako bi se članovi sveli na izraze koji sadrže virtualni pomak δu_i te na taj način dobile diferencijalne jednadžbe gibanja. Na taj način se iz prvog člana, uz korištenje uvjeta (4.21), dobiva sljedeći izraz:

$$\int_{i_{1}}^{i_{1}} \left(\int_{i_{u}} \left(\rho \dot{u}_{i} \delta \dot{u}_{i} - \frac{\partial W}{\partial \varepsilon_{y}} \delta \varepsilon_{y} + \overline{X}_{i} \delta u_{i} \right) dV \right) dt = \int_{i_{u}}^{i_{u}} \left(\rho \dot{u}_{i} \delta u_{i} \Big|_{i_{i}}^{i_{2}} - \int_{i_{i}}^{i_{u}} \rho \ddot{u}_{i} \delta u_{i} dt \right) dV = -\int_{i_{1}}^{i_{u}} \left(\int_{i_{u}} \rho \ddot{u}_{i} \delta u_{i} dV \right) dt \quad (4.30)$$

dok dio koji se odnosi na potencijalnu energiju deformacije kontinuuma, uz korištenje izraza (4.6) i (4.13) daje:

$$\int_{V_u} \frac{\partial W}{\partial \varepsilon_{ij}} \delta \varepsilon_{ij} dV = \frac{1}{2} \int_{V_u} \sigma_{ij} \left(\delta \frac{\partial u_i}{\partial x_j} + \delta \frac{\partial u_j}{\partial x_i} + \frac{\partial u_m}{\partial x_i} \delta \frac{\partial u_m}{\partial x_j} + \frac{\partial u_m}{\partial x_j} \delta \frac{\partial u_m}{\partial x_i} \right) dV$$
(4.31)

Upotrebom formule Green-Ostogradskog [64] koja povezuje plošne i volumne integrale, moguće je dobiti:

$$\int_{a}^{a} \frac{\partial W}{\partial \varepsilon_{ij}} \delta \varepsilon_{ij} dV = \frac{1}{2} \int_{s}^{b} \left(n_{i} \sigma_{ij} \left(\delta u_{j} + \delta u_{m} \frac{\partial u_{m}}{\partial x_{j}} \right) + n_{j} \sigma_{ij} \left(\delta u_{i} + \delta u_{m} \frac{\partial u_{m}}{\partial x_{i}} \right) \right) dS - \frac{1}{2} \int_{V_{a}}^{b} \left(\frac{\partial \sigma_{ij}}{\partial x_{i}} \delta u_{j} + \frac{\partial \sigma_{ij}}{\partial x_{j}} \delta u_{i} + \frac{\partial}{\partial x_{j}} \left(\sigma_{ij} \frac{\partial u_{m}}{\partial x_{i}} \right) \delta u_{m} + \frac{\partial}{\partial x_{j}} \left(\sigma_{ij} \frac{\partial u_{m}}{\partial x_{j}} \right) \delta u_{m} dV$$

$$(4.32)$$

te konačno korištenjem kinematičkog rubnog uvjeta :

$$\int_{V_{a}} \frac{\partial W}{\partial \varepsilon_{ij}} \delta \varepsilon_{ij} dV = \int_{S_{a}} n_{i} \left(\sigma_{ij} + \sigma_{im} \frac{\partial u_{j}}{\partial x_{m}} \right) \delta u_{j} dS - \int_{V_{a}} \frac{\partial}{\partial x_{i}} \left(\sigma_{ij} + \sigma_{im} \frac{\partial u_{j}}{\partial x_{m}} \right) \delta u_{j} dV$$

$$\tag{4.33}$$

Vraćanjem izraza za kinetičku energiju kao i za ukupnu potencijalnu energiju u varijacijsku jednadžbu dobiva se:

$$\delta_{i_{1}}^{i_{2}}L(\{u\})dt = \int_{i_{1}}^{i_{2}} \left(\int_{S_{\sigma}} \left(\overline{g}_{j} - n_{j} \left(\sigma_{ij} + \sigma_{im} \frac{\partial u_{j}}{\partial x_{m}} \right) \delta u_{j} dS \right) + \int_{V_{a}} \left(\frac{\partial}{\partial x_{j}} \left(\sigma_{ij} + \sigma_{im} \frac{\partial u_{j}}{\partial x_{m}} \right) - \rho \overline{u}_{j} + \overline{X}_{j} \right) \delta u_{j} dV \right) dt = 0 \quad (4.34)$$

Budući je virtualni pomak proizvoljan na volumenu V_0 i površini S_{σ} to se dobivaju jednadžbe dinamičke ravnoteže na područjima V_0 i S_{σ} :

$$\frac{\partial}{\partial x_i} \left(\sigma_{ij} + \sigma_{im} \frac{\partial u_j}{\partial x_m} \right) - \rho \ddot{u}_j + \overline{X}_j \qquad \text{na } V_0$$
(4.35)

na Sa

te

(4.36)

Ove jednadžbe dobivene na temelju Hamiltonovog principa predstavljavljaju jednadžbe dinamičke ravnoteže deformabilnog tijela u funkciji Kirchoff-Treffzovih naprezanja za raspodijeljene sustave.

4.5. Jednodimenzijski raspodijeljeni sustavi

 $\overline{g}_{j} = n \left(\sigma_{ij} + \sigma_{im} \frac{\partial u_{j}}{\partial x_{m}} \right)$

U mnogim slučajevima, specifična geometrija tijela s raspodijeljenom masom dopušta pojednostavljenu formulaciju jednadžbi gibanja u funkciji od jedne ili eventualno dvije komponente pomaka koje također mogu same biti funkcije jedne ili dviju komponenata prostornih koordinata. Takvo se pojednostavljenje često primjenjuje u praksi npr. u obliku jednodimenzijskih raspodijeljenih

sustava kojima se modeliraju vibracijski sustavi u rotordinamici. U svim tim slučajevima moguće je koristiti izraze izvedene u poglavlju 4.4. koji predstavljaju temeljni princip dinamike raspodijeljenog sustava, ali je još povoljnije izvesti specifične izraze povezane s teorijom jednodimenzijskih raspodijeljenih sustava.

Polje pomaka kod jednodimenzijskih raspodijeljenih sustava reducirano je na ravninu te se može prikazati pomoću sljedećih jednadžbi:

$$u(z,t) \neq 0, \ v(z,t) = 0, \ w(z,t) \neq 0.$$
 (4.37)

Na temelju tih pretpostavki moguće je izvesti jednadžbe gibanja jednodimenzijskog raspodijeljenog konzervativnog sustava varijacijom Lagranžijana u skladu s Hamiltonovim principom:

$$\delta \int_{t_1}^{t_2} L(u)dt = 0 \tag{4.38}$$

Ako se aksijalna komponenta pomaka zanemari (w=0), vrijedit će sljedeće zakonitosti:

- Potencijalna energija E_p funkcija je pomaka i njegovih derivacija po varijablama prostora $E_p = E_p(u, u', u'')$.
- Kinetička energija E_k funkcija je brzine i njezinih derivacija po varijablama prostora, ali ponekad može biti i funkcija pomaka i njegovih derivacija po varijablama prostora $E_k = E_k(u, \dot{u}, u', \dot{u}')$.

Na temelju tih zakonitosti moguće je i Lagranžijan jednodimenzijskih raspodijeljenih sustava prikazati kao funkciju:

$$L = E_k - E_p = L(u, u', u'', \dot{u}, \dot{u}')$$
(4.39)

Na temelju iznesenog moguće je napisati sljedeći izraz za varijacijsku jednadžbu (4.38):

$$\int_{0}^{a} \int_{0}^{t} \left(\frac{\partial L}{\partial u} \delta u + \frac{\partial L}{\partial u'} \delta u' + \frac{\partial L}{\partial u''} \delta u'' + \frac{\partial L}{\partial \dot{u}} \delta \dot{u} + \frac{\partial L}{\partial \dot{u}'} \delta \dot{u}' \right) dz dt = 0.$$

$$(4.40)$$

Parcijalnom integracijom pojedinih članova ove jednadžbe, uz prikaz pojedinih varijacija u funkciji virtualnog pomaka δu , dobiva se:

a)
$$\int_{0}^{t} \frac{\partial L}{\partial u'} \delta u' dz = \frac{\partial L}{\partial u'} \delta u \Big|_{0}^{t} - \int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz$$

b)
$$\int_{0}^{t} \frac{\partial L}{\partial u''} \delta u'' dz = \left(\frac{\partial L}{\partial u''} \delta u' - \frac{\partial}{\partial z} \left(\frac{\partial L}{\partial u''} \right) \delta u \right) \Big|_{0}^{t} + \int_{0}^{t} \frac{\partial^{2}}{\partial z^{2}} \left(\frac{\partial L}{\partial u''} \right) \delta u dz$$

c)
$$\int_{t_{1}}^{t_{2}} \frac{\partial L}{\partial u} \delta u dt = \left(\frac{\partial L}{\partial u} \delta u \right) \Big|_{t_{1}}^{t_{2}} - \int_{t_{1}}^{t_{2}} \frac{\partial L}{\partial t} \left(\frac{\partial L}{\partial u} \right) \delta u dt$$

(4.41)

$$\int_{t_{1}}^{t_{1}} \frac{\partial L}{\partial u'} \delta u' dz dt = \left(\left(\frac{\partial L}{\partial u'} \delta u \right) \right) \Big|_{0}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \delta u dz dt \right) \Big|_{t_{1}}^{t_{2}} - \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \right) \left(\int_{0}^{t} \frac{\partial L}{\partial z} \left(\frac{\partial L}{\partial u'} \right) \left(\int_{0}^{t} \frac{\partial L}{\partial u'} \right) \left(\int_{0}^{t} \frac{\partial L}{\partial u'} \right) \left(\int_{0}^{t} \frac{\partial L}{\partial u'} \left(\int_{0}^{t} \frac{\partial L}{\partial u'} \right) \left(\int_{0}^{t} \frac{\partial L}{\partial u'} \left(\int_{0}^{t} \frac{\partial L}{\partial u'} \right) \left(\int_{0}^{t} \frac{\partial L}{\partial u'} \left(\int_{0}^{t} \frac{\partial L}{\partial u'} \right) \left(\int_{0}^{t} \frac{\partial L$$

Zbrajanjem svih članova te uzimajući u obzir da po Hamiltonovom principu funkcional mora zadovoljavati uvjete $\delta u(t_1) = \delta u(t_2) = 0$, te smještanjem članova s određenih integralima u rubne uvjete, moguće je dobiti jednadžbu gibanja jednodimenzijskog raspodijeljenog sustava:

$$\frac{\partial L}{\partial u} - \frac{\partial}{\partial z} \left(\frac{\partial L}{\partial u'} \right) + \frac{\partial^2}{\partial z^2} \left(\frac{\partial L}{\partial u''} \right) - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{u}} \right) + \frac{\partial}{\partial t} \left(\frac{\partial}{\partial z} \left(\frac{\partial L}{\partial \dot{u}'} \right) \right) = 0$$
(4.42)

uz rubne uvjete: za z=0 i z=l:

X.U

$$\left(\frac{\partial L}{\partial u'} - \frac{\partial}{\partial z} \left(\frac{\partial L}{\partial u''}\right) - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{u}'}\right)\right) \delta u = 0 \qquad \qquad i \qquad \qquad \frac{\partial L}{\partial u''} \delta u' = 0 \tag{4.43}$$

4.5.1. Poprečne vibracije greda bez smičnih deformacija

Sl. 4.4. Poprečne vibracije Bernoulli-Eulerove grede

duljine *I*, masene gustoće ρ_0 i površine poprečnog presjeka *A*. Za analizu poprečnih vibracija grede pri savijanju, potrebno je uvesti sljedeće pretpostavke:

Na slici (4.4) je prikazana greda

1. Poprečni presjek grede nije deformabilan,

 Poprečni pomak grede, koji je kontinuirana funkcija, ograničen je na pomak u x-z ravnini tj. vrijedi:

u=u(z), v=0 (4.44)

 Uzdužna komponenta pomaka proizlazi iz rotacije poprečnog presjeka. Rotacija je takva da poprečni presjek ostaje okomit na neutralnu os, sl.4.5:

Sl. 4.5. Kinematičke pretpostavke Bernoulli-Eulerove grede

$$w(z,x) = -x \frac{\partial u}{\partial z}.$$
(4.45)

Temeljem pretpostavki o geometrijskoj linearnosti (gdje i rotacijski i translacijski pomaci imaju malene vrijednosti) dolazi se do sljedećih izraza za komponente tenzora deformacije:

$$\varepsilon_s = \frac{\partial u}{\partial x} = 0$$
 ; $\varepsilon_z = \frac{\partial w}{\partial z} = -x \frac{\partial^2 u}{\partial z^2}$; $\varepsilon_{sz} = \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) = 0$. (4.46)

Iz navedenog je vidljivo da je kod poprečnih vibracija greda kod kojih se zanemaruju smične deformacije (tzv. Bernoulli-Eulerove grede) samo jedan član tenzora deformacije različit od nule a da se pretpostavkom (4.45) zapravo zanemaruju smične deformacije u materijalu kontinuuma.

4.5.1.1. Energetski izrazi i jednadžbe gibanja kod Bernoulli-Eulerove grede

Prema literaturi [65] za jednoosno stanje naprezanja vrijedi:

$$\sigma_x = 0, \ \sigma_y = 0, \ \sigma_z = E\varepsilon_z. \tag{4.47}$$

te se uporabom izraza (4,12) i (4,27) za potencijalnu energiju deformacije kontinuuma:

$$E_{poon} = \int_{V_n}^{V_n} \int_{0}^{\sigma_n} d\varepsilon_n dV.$$
(4.48)

može izvesti izraz za potencijalnu energiju deformacije Bernoulli-Eulerove grede:

$$E_{pumu} = \frac{1}{2} \int_{0}^{t} EI\left(\frac{\partial^2 u}{\partial z^2}\right)^2 \mathrm{d}z \,. \tag{4.49}$$

pri čemu je:

 $I(z) = \int x^2 dA$ - aksijalni moment inercije poprečnog presjeka,

EI - krutost savijanja poprečnog presjeka,

$$\frac{\partial^2 u}{\partial z^2}$$
 - zakrivljenost grede

Kinetička energija kontinuuma je definirana izrazom (4.25) te se za Bernoulli-Eulerovu gredu dobiva:

$$E_{k} = \frac{1}{2} \int_{0}^{t} \rho I \left(\frac{\partial \dot{u}}{\partial z}\right)^{2} \mathrm{d}z + \frac{1}{2} \int_{0}^{t} \rho A \dot{u}^{2} \mathrm{d}z \quad .$$

$$\tag{4.50}$$

iz čega, uvođenjem sljedećih varijabli:

dz:

 $m = A\rho$ - masa po jedinici duljine grede,

$$i_A = \sqrt{\frac{I}{A}}$$
 - radijus inercije poprečnog presjeka,

dobiva konačni izraz za kinetičku energiju Bernoulli-Eulerove grede:

$$E_{k} = \frac{1}{2} \int_{0}^{t} m \left(\dot{u}^{2} + \dot{w}^{2} \right) dz + \frac{1}{2} \int_{0}^{t} m i_{d}^{2} \left(\frac{\partial \dot{u}}{\partial z} \right)^{2} dz .$$
(4.51)

Prvi izraz definira kinetičku energiju translacije Bernoulli-Eulerove grede, a drugi rotacijsku energiju njezinog poprečnog presjeka oko osi okomite na ravninu poprečnog presjeka.

Izraz za potencijalnu energiju Bernoulli-Eulerove grede zbog vanjskih konzervativnih sila nastaje superpozicijom potencijalnih energija koje odgovaraju djelovanjima pripadnih raspodijeljenih i koncentriranih opterećenja. U slučaju koncentriranih opterećanja potencijalna energija je jednaka intenzitetu skalarnog umnoška oprećenja (na krajevima grede su pretpostavljena vanjska opterećenja i to od smičnih sila \overline{Q} i momenata savijanja \overline{M}) i pomaka, dok je za raspodijeljena opterećenja, koja su definirana svojim intenzitetima po jedinici duljine i to p(z,t) za raspodijeljeno vertikalno opterećenje i q(z,t) za raspodijeljeni moment savijanja, potrebno izvršiti integraciju po uzdužnoj osi grede, te slijedi:

$$E_{puuu} = -\int_{0}^{l} pudz - \int_{0}^{l} q \frac{\partial u}{\partial z} dz + \overline{Q}(0)u(0) - \overline{Q}(l)u(l) + \overline{M}(0) \left(\frac{\partial u}{\partial z}\right)_{0} - \overline{M}(l) \left(\frac{\partial u}{\partial z}\right)_{l}.$$
(4.52)

Primjenjujući na izraze za kinetičku i potencijalnu energiju Bernoulli-Eulerove grede Hamiltonov princip, dobiva se diferencijalna jednadžba njezinog gibanja:

$$m\ddot{u} - \frac{\partial}{\partial z} \left(m i_A^2 \frac{\partial \ddot{u}}{\partial z} \right) + \frac{\partial^2}{\partial z^2} \left(E I \frac{\partial^2 u}{\partial z^2} \right) = p - \frac{\partial q}{\partial z}.$$
(4.53)

uz rubne uvjete na krajevima z=0 i z=l koji glase: za poprečni pomak

 $u = \overline{u}$

(4.54) $Q = mi_A^2 \frac{\partial ii}{\partial z} - \frac{\partial}{\partial z} \left(EI \frac{\partial^2 u}{\partial z^2} \right) - q = \overline{Q},$ ili

za rotacijski pomak

$$\frac{\partial u}{\partial z} = \overline{\phi} \qquad \text{ili} \qquad M = EI \frac{\partial^2 u}{\partial z^2} = \overline{M} . \tag{4.55}$$

4.5.1.2. Jednadžba slobodnih vibracija Bernoulli-Eulerove grede

Jednadžbu slobodnih vibracija Bernoulli-Eulerove grede moguće je dobiti pretpostavljanjem rješenja harmoničkog gibanja u obliku $u(z,t) = u(t)\sin\omega t$, pri čemu je ω kružna frekvencija vibracija, iz čega se dobiva [66]:

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2} \left(EI \frac{\mathrm{d}^2 u}{\mathrm{d}z^2} \right) - \omega^2 m u + \omega^2 \frac{\mathrm{d}}{\mathrm{d}z} \left(m i_A^2 \frac{\mathrm{d}u}{\mathrm{d}z} \right) = 0 \,. \tag{4.56}$$

Pod pretpostavkom da se za slučaj zanemarivanja smičnih deformacija radijus inercije poprečnog presjeka i4 može također zanemariti, slijedi konačna verzija jednadžbe slobodnih vibracija Bernoulli-Eulerove grede:

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2} \left(EI \frac{\mathrm{d}^2 u}{\mathrm{d}z^2} \right) - \omega^2 m u = 0 .$$
(4.57)

4.5.1.3. Vlastite frekvencije i vlastiti oblici vibriranja Bernoulli-Eulerove grede

Za slučaj konstantne krutosti savijanja poprečnog presjeka EI, moguće je jednadžbu slobodnih vibracija Bernoulli-Eulerove grede napisati kao:

$$\frac{d^4 u}{dz^4} - \omega^2 \frac{m}{EI} u = 0.$$
 (4.58)

što daje karakterističnu jednadžbu $r_k^4 - \lambda^4 = 0$ uz korištenje zamjene $\lambda^4 = \frac{\omega^2 m}{ET}$.

Rješenja karakteristične jednadžbe su $r_{k1,2} = \pm \lambda$ te $r_{k3,4} = \pm j\lambda$. Na temelju tih rješenja moguće je napisati rješenje slobodnih vibracija Bernoulli-Eulerove grede u obliku:

$$u(z) = A_1 \cosh(\lambda z) + A_2 \cos(\lambda z) + A_3 \sinh(\lambda z) + A_4 \sin(\lambda z), \qquad (4.59)$$

ili korištenjem Duncanovih (Krylovljevih) funkcija u obliku:

rješavanjem dobivaju vlastite frekvencije vibriranja grede, te tada na temelju izraza (4.60) i njezine vlastite oblike vibriranja. Vrijednosti vlastitih frekvencija vibriranja Bernoulli-Eulerove grede, za specifične uvjete oslanjanja i opterećenja grede dani su u [67].

4.5.1.4. Prisilne vibracije raspodijeljenih sustava

Prisilne vibracije se opisuju nehomogenim parcijalnim diferencijalnim jednadžbama te se njihovo rješenje može tražiti ili metodama transformacije (npr. nekom od Laplaceovih transformacija) ili modalne superpozicije (spektralnom analizom). Prema [68] metode transformacije su se u mnogim slučajevima pokazale presloženima, pa se prednost daje metodi spektralne analize. Prema toj metodi rješenje problema prisilnih vibracija raspodijeljenog sustava za Bernoulli-Eulerovu gredu

$$EI\frac{d^{4}u(z,t)}{dz^{4}} + m\ddot{u}(z,t) = p(z,t),$$
(4.67)

61

moguće je dobiti reduciranjem jednadžbe gibanja na sustav razvezanih normalnih jednadžbi. Navedeni se sustav može dobiti temeljem svojstva ortogonalnosti vlastitih oblika vibriranja Bernoulli-Eulerove grede. Pri tome se koristi sljedeća linearna kombinacija kao izraz za polje pomaka raspodijeljene strukture:

$$u(z,t) = \sum_{i=1}^{\infty} \eta_i(t) \phi_i(z),$$
(4.68)

gdje su $\eta_i(t)$ normalne koordinate povezane s vlastitim oblicima vibriranja $\phi_i(z)$. Vlastite oblike vibriranja $\phi_i(z)$, koji zadovoljavaju uvjete K i M ortogonalnosti, moguće je dobiti na temelju teorije iznešene u poglavlju 4.5.1.3. U tom slučaju dobiva se sljedeći razvezani sustav diferencijalnih jednadžbi

$$\tilde{\eta}_{i}(t) + \omega_{i}^{2}(t)\eta_{i}(t) = p_{i}(t) , \quad i = 1, 2, ..., \infty,$$
(4.69)

gdje su komponente spektralnog opterećenja $p_i(t)$ definirane kao:

$$p_{i}(t) = \int_{0}^{t} \phi_{i}(z) \ p(z,t) dz , \qquad (4.70)$$

u ovisnosti o stvarnoj raspodjeli vanjskog opterećenja kao i vlastitih formi vibriranja. Svaka jednadžba (4.69) opisuje učešće jednog vlastitog oblika vibriranja tj. jedne komponente spektra odziva u ukupnom odzivu.

Rješenje *i*-te komponente spektra odziva moguće je sada dobiti prilično jednostavno npr.korištenjem Duhamelovog (konvolucijskog) integrala kako slijedi:

$$\eta_i(t) = \eta_i(0)\cos\omega_i t + \frac{\dot{\eta}_i(0)}{\omega_i}\sin\omega_i t + \frac{1}{\omega_i}\int_{0}^{t} p_i(t)\sin(\omega_i(t-\tau))d\tau, \qquad (4.71)$$

pri čemu su početni uvjeti definirani kao:

$$\eta_{i}(0) = \int_{0}^{t} m \phi_{i}(z) u(0) dz \quad i \quad \dot{\eta}_{i}(0) = \int_{0}^{t} m \phi_{i}(z) \dot{u}(0) dz , \qquad (4.72)$$

$$u(z) = B_1 c_1(z) + B_2 s_1(z) + B_3 c_2(z) + B_4 s_2(z).$$
(4.60)

gdje su Duncanove funkcije definirane kao:

$$c_1(z) = \cosh(\lambda z) + \cos(\lambda z) , \qquad c_2(z) = \cosh(\lambda z) - \cos(\lambda z) , \qquad (4.61)$$

$$s_1(z) = \sinh(\lambda z) + \sin(\lambda z) , \qquad s_2(z) = \sinh(\lambda z) - \sin(\lambda z) ,$$

te im je osnovna prednost da se svaka sljedeća dobiva jednostavnim deriviranjem iz predhodne:

$$c_1(z) = \frac{1}{\lambda} s_1'(z) = \frac{1}{\lambda^2} c_2''(z) = \frac{1}{\lambda^3} s_2'''(z).$$
(4.62)

(4.63)

Ako se izraz (4.60) napiše u matričnom obliku slijedi:

$$u(z) = \{c_1(z) \ s_1(z) \ c_2(z) \ s_2(z)\} \begin{cases} B_1 \\ B_2 \\ B_3 \\ B_4 \end{cases} = \{KR\}^T \{B\},$$

gdje je {KR} vektor Krylovljevih funkcija a {B} vektor konstanti. Ako se uvede vektor stanja oblika $\{z\}^T = \{u(z), u'(z), M(z), Q(z)\},$ može se pisati:

$$\begin{cases} u(x) \\ u'(x) \\ M(x) \\ Q(x) \end{cases} = \frac{1}{2} \begin{bmatrix} c_1(z) & \frac{s_1(z)}{\lambda} & -\frac{c_1(z)}{\lambda^2 EI} & \frac{c_2(z)}{\lambda^3 EI} \\ \lambda s_2(z) & c_1(z) & -\frac{s_1(z)}{\lambda EI} & -\frac{c_1(z)}{\lambda^2 EI} \\ -\lambda^2 EIc_2(z) & -\lambda EIs_2(z) & c_1(z) & \frac{s_1(z)}{\lambda} \\ -\lambda^3 EIs_1(z) & -\lambda^2 EIc_2(z) & \lambda s_2(z) & c_1(z) \end{bmatrix} \begin{bmatrix} u(0) \\ u'(0) \\ M(0) \\ Q(0) \end{bmatrix} .$$
(4.64)

što znači da postoji matrica koja povezuje vektore stanja u početnoj točki z=0 i u nekoj proizvoljnoj točki z. Elementi te matrice funkcije su koordinate položaja točke i vlastitih frekvencija. Ako se ovakva veza iskoristi za definiranje stanja u drugoj krajnjoj točki grede z=l, dobiva se korištenjem sljedećih oznaka za trigonometrijske i hiperboličke funkcije:

$$C = \cosh(\lambda l), S = \sinh(\lambda l), c = \cos(\lambda l), s = \sin(\lambda l),$$
(4.65)

sljedeću matričnu jednadžbu:

$$\begin{cases} u(l) \\ u'(l) \\ u'(l) \\ Q(l) \end{cases} = \frac{1}{2} \begin{bmatrix} C+c & \frac{S+s}{\lambda} & -\frac{C-c}{\lambda^2 EI} & \frac{S-s}{\lambda^3 EI} \\ \lambda(S-s) & C+c & -\frac{S+s}{\lambda EI} & -\frac{C-c}{\lambda^2 EI} \\ -\lambda^2 EI(C-c) & -\lambda EI(S-s) & C+c & \frac{S+s}{\lambda} \\ -\lambda^3 EI(S+s) & -\lambda^2 EI(C-c) & \lambda(S-s) & C+c \end{bmatrix} \begin{bmatrix} u(0) \\ u'(0) \\ M(0) \\ Q(0) \end{bmatrix} .$$
(4.66)

Uvrštavanjem vrijednosti rubnih uvjeta u vektore stanja na obje krajnje točke Bernoulli-Eulerove grede moguće je formirati homogeni sustav trigonometrijskih i hiperboličkih jednadžbi čijim se

Konačnu vrijednost odziva prisilnih vibracija raspodijeljenih sustava dobiva se vraćanjem rješenja (4.72) u linearnu kombinaciju (4.68).

4.5.2. Poprečne vibracije greda uključujući smične deformacije

Kod dužih i debljih osovina modeliranih grednim modelom potrebno je uzeti u obzir i dodatni efekt smične deformacije. Takav se efekt uzima u obzir kod Timoshenkovog modela grede čija je deformacija prikazana na sl. 4.6. Kod Timoshenkove grede i dalje vrijede pretpostavke 1 i 2 za Bernoulli-Eulerovu gredu međutim prestaje važiti pretpostavka 3. Stoga je potrebno uvesti novu varijablu ψ za rotaciju poprečnog presjeka grede. Ova je varijabla neovisna o pomaku *u*. Izraz (4.45) u tom slučaju poprima novi oblik [69]:

 $w(x,z) = -x\psi(z), \tag{4.73}$

dok komponente tenzora deformacije iznose:

$$\varepsilon_r = \frac{\partial u}{\partial r} = 0 - z \frac{\partial \psi}{\partial r} \quad ; \quad \varepsilon_z = \frac{\partial w}{\partial z} = -x \frac{\partial \psi}{\partial z} \quad ; \quad \gamma_{rz} = 2\varepsilon_{rz} = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \psi \right) = 0 \;.$$

$$(4.74)$$

4.5.2.1. Energetski izrazi i jednadžbe gibanja kod Timoshenkove grede

Na sličan način kao i kod BernoulLijeve grede moguće je izvesti izraz za potencijalnu energiju:

$$E_{\mu} = \frac{1}{2} \iint_{0} \left(\int_{A} Ex^{2} \left(\frac{\partial \psi}{\partial z} \right)^{2} \mathrm{d}A + \int_{A} \sigma_{vz} \left(-\psi + \frac{\partial u}{\partial z} \right) \mathrm{d}A \right) \mathrm{d}z .$$

$$(4.75)$$

Zbog prisutnosti smične deformacije uobičajeno se na ovom mjestu uvodi pojam koeficijenta redukcije poprečnog presjeka κ na sljedeći način:

$$\sigma_{sz} dA = \kappa A G \gamma_{sz} \,. \tag{4.76}$$

gdje je A - površina poprečnog presjeka,

1

G - modul smika materijala grede,

κA - reducirani presjek.

Na temelju toga dobiva se konačni izraz za potencijalnu energiju Timoshenkove grede:

$$E_{p} = \frac{1}{2} \int_{0}^{t} \left(EI\left(\frac{\partial \psi}{\partial z}\right)^{2} + \kappa AG\left(-\psi + \frac{\partial u}{\partial z}\right)^{2} \right) dz \,. \tag{4.77}$$

Kinetička energija Timoshenkove grede jednaka je kinetičkoj energiji Bernoulli-Eulerove grede i definirana je izrazom (4.51).

Na sličan način kao i kod Bernoullijeve grede, superpozicijom potencijalnih energija koje odgovaraju djelovanjima pripadnih raspodijeljenih i koncentriranih opterećenja moguće je dobiti potencijalnu energiju Timoshenkove grede zbog djelovanja vanjskih sila:

$$E_{pvan} = -\int_{0}^{l} p u dz - \int_{0}^{l} q \psi dz + \overline{Q}(0) u(0) - \overline{Q}(l) u(l) + \overline{M}(0) \psi(0) - \overline{M}(l) \psi(l).$$

$$(4.78)$$

Temeljem primjene Hamiltonovog principa na kinetičku i potencijalnu energiju Timoshenkove grede, uzimajući u obzir nezavisnost varijabli u i ψ dobivaju se dvije jednadžbe gibanja:

$$\frac{\partial}{\partial z} \left(EI \frac{\partial \psi}{\partial z} \right) + \kappa AG \left(\frac{\partial w}{\partial z} - \psi \right) + q = m i_A^2 \ddot{\psi} \qquad i$$

$$\frac{\partial}{\partial z} \left(\kappa AG \left(\frac{\partial w}{\partial z} - \psi \right) \right) + p = m \ddot{u}.$$
(4.79)

uz rubne uvjete na krajevima z=0 i z=l koji glase:

W

za poprečni pomak

$$u = \overline{u}$$
 ili $Q = \kappa AG\left(\frac{\partial u}{\partial z} - \psi\right) = \overline{Q}$

za rotacijski pomak

$$T = \overline{\psi}$$
 ili $M = EI \frac{\partial \psi}{\partial z} = \overline{M}$.

Dvije jednadžbe gibanja Timoshenkove grede svezane su po varijablama u i ψ . Postoji mogućnost eliminacije jedne od varijabli te se tako, npr. u odsutnosti vanjskog opterećenja, dobiva:

2....

$$\frac{\partial^4 u}{\partial z^4} - \left(\frac{m}{\kappa AG} + \frac{mi_A^2}{EI}\right) \frac{\partial^4 u}{\partial^2 z \partial t^2} + \frac{m}{EI} \frac{\partial^2 u}{\partial t^2} + \frac{m}{\kappa AG} \frac{mi_A^2}{EI} \frac{\partial^4 u}{\partial t^4} = 0.$$
(4.80)

Postupak određivanja vlastitih frekvencija i oblika vibriranja kao i prisilnih vibracija Timoshenkove grede sličan je postupku određivanja istih kod Bernoulli-Eulerove grede, te na ovom mjestu, zbog izbjegavanja ponavljanja, neće biti iznesen.

5. Metode matematičkog modeliranja u rotordinamici

Vibracije kontinuiranih sustava mogu se matematički opisati parcijalnim diferencijalnim jednadžbama. Njihove slobodne vibracije vode homogenim, dok prisilne vibracije zahtjevaju rješavanje nehomogenih parcijalnih diferencijalnih jednadžbi. Postoji mogućnost da analitička rješenja nekih parcijalnih diferencijalnih jednadžbi ne postoje dok se pri rješavanju drugih javljaju veliki problemi. Osim toga iznalaženje egzaktnog rješenja raspodijeljenih sustava ograničeno je na slučajeve relativno jednostavne geometrije, oblike opterećenja i vrste oslanjanja, te je pri rješavanju složenijih slučajeva nužno koristiti neku od aproksimativnih metoda što daju približna rješenja.

Odabir prikladnog rotordinamičkog modela jedan je od temeljnih zadataka matematičkog modeliranja u rotordinamici. O tom odabiru zavisit će točnost dobivenih rezultata ali i vrijeme korištenja i zauzetost CPU-a. U principu svi radovi napisani u posljednjih 20-tak godina temeljeni su na jednom od sljedeća četiri rotordinamička modela:

- diskretni model
- prijenosno matrični model
- konačno elementni model
 fizikalno modalni model

5.1. Diskretni model

U diskretnom modelu, cijela struktura rotora se uobičajeno prikazuje pomoću modalnih parametara prvog vibracijskog moda. Najčešće se koriste vrlo jednostavni modeli opisani u drugom poglavlju i to Jeffcottov rotor, čije je fleksijsko vibracijsko ponašanje opisano s dvije diferencijalne jednadžbe drugog reda ili Stodola-Greenov model ponašanje kojeg se može opisati s dvostruko više diferencijalnih jednadžbi. Ova je metoda naročito bila upotrebljavana u ranim fazama rješavanja problema zapinjanja rotora o stator budući ovakvi modeli imaju često puta i analitička rješenja koja daju potpuni dinamički uvid u fenomen kontakta rotora i statora, poglavlje (2.6.2.3), [27],[32],[38]. Osim toga ovim se modelom mogu dobiti rezultati iz kojih se može lijepo detektirati fenomen natražne precesije koji se pojavljuje pod strogo propisanim uvjetima navedenim u poglavlju 2.6.2.5. [41],[43]. Ipak, najnovija istraživanja fenomena kontakta [70] pokazuju da su diskretni modeli prejednostavni za kompletno objašnjenje vibracijskih fenomena za vrijeme kontakta. Razlog tome leži u činjenici da sile generirane za vrijeme kontakta sadrže frekventni spektar čiji sadržaj obično prevazilazi područje prvog vibracijskog moda.

5.2. Prijenosno - matrični model

Metoda prijenosnih matrica predstavljala je najviše korištenu rotordinamičku metodu do pojave metode konačnih elemenata. Metoda je naročito pogodna za dobijanje temeljnih vibracijskih pokazatelja kao što su vlastite frekvencije i forme vibriranja te odzivi prisilnih vibracija rotora koji se mogu modelirati u lančanom obliku bez grananja strukture. Metodu je prvi razvijao Holzer u području torzijskih vibracija. Temelje proračuna fleksijskih vibracija rotora ovom metodom uveli su Myklestadt i Prohl. Ostalim aspektima primjene ove metode na području linearne rotordinamike naročito se je kasnije bavio Lund [71]. Glavna prednost metode prijenosnih matrica u odnosu na druge metode je numeričke prirode i leži u činjenici da nije potrebno definirati velike memorijske prostore za matrice i vektore pri modeliranju većih rotordinamičkih sustava lančanog tipa. Dinamičko stanje rotorovog sustava na određenoj poziciji je definirano pomoću vektora stanja pri čemu se informacija o stanju u

susjednim točkama rotora prenosi pomoću prijenosnih matrica. Procedura započinje s definiranjem rubnih uvjeta na jednoj od strana linijske rotordinamičke strukture a završava ispunjavanjem rubnih uvjeta na drugoj strani strukture.

Najveći nedostaci metode prijenosnih matrica u rotordinamici su relativno teška adaptacija metode na probleme tzv. razgranatih struktura (npr. kada model uključuje i temelj rotora) te pri primjeni kod sustava gdje se pojavljuju nelinearnosti. Zbog tih razloga ova metoda matematičkog modeliranja u rotordinamici polako izlazi iz upotrebe.

5.2.1. Vektor stanja

Sl. 5.1, Tipični model rotora lančanog tipa

Na sl. 5.1 prikazan je tipični model rotora lančanog tipa. Vektor stanja u određenoj točki *i* je definiran kao vektor čiji elementi uključuju pomake i opterećenja u rubnim točkama *i*-1-vog i *i*-tog polja, koja se sijeku u toj točki. U slučaju fleksijskih vibracija

$$\{z\} = \{ u \lor \alpha \beta M_y M_x Q_y Q_x \}^{T}$$
(5.1)

s pomacima i opterećenjima prikazanim na sl. 5.2. Vektor stanja s lijeve strane točke *i* je u principu različit od vektora stanja s desne strane te točke. Stoga se uobičajeno koriste indeksi *D* i *L* za desnu i lijevu stranu točke *i*.

5.2.2. Tipovi prijenosnih matrica

Rotirajuća osovina prikazana na sl. 5.1. sastoji se od krutih diskova i linearnih ležajeva (karakteriziranih krutošću i prigušenjem) koji se nazivaju točkama koje su odijeljene segmentima elastičnih greda koji se nazivaju poljima. Polja su modelirana elastičnim elementima (bez mase) pri čemu su njihova inercijska

Sl. 5.2. Pomaci i opterečenje u i-toj čvornoj točki

svojstva uključena u obliku krutih diskovima u točkama na krajevima polja. Efekti unutarnjeg prigušenja ne moraju se zanemariti. Općenito postoje dva tipa prijenosnih matrica i to prijenosna matrica polja i matrica točke. Prijenosna matrica sustava pak predstavlja treći, zasebni tip prijenosnih matrica.

5.2.2.1. Prijenosna matrica točke

Prijenosna matrica točke povezuje vektor stanja s desne strane neke *i*-te točke s vektorom stanja s lijeve strane iste točke:

$$\{\ell^{\mu} = [T_{\mu}]\{z_{\mu}\}^{\ell}$$

$$\tag{5.2}$$

Pri tome će se, zbog inercijskih svojstava, mijenjati opterećenje (momenti i sile) dok se pomaci (linearni i kutni), zbog nedeformabilnosti krutog tijela neće mijenjati te prijenosna matrica točke, u kojoj mogu biti smješteni kruti disk i/ili linearni ležaj u tom slučaju glasi [72]:

	1	0	0	0	0	0	0	07	(5.3)
	0	Î.	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	
[m]	0	0	0	1	0	0	0	0	
$[I_i] =$	0	0	$-\Omega J_a \lambda$	$J_{\mu}\lambda^{2}$	1	0	0	0	
	0	0	$J_{\mu}\lambda^{2}$	$\Omega J_{\mu}\lambda$	0	1	0	0	
	b_{yx}	$b_{yy} + m\lambda^2$	0	0	0	0	1	0	
	$b_{xx} + m\lambda^2$	b_{xy}	0	0	0	0	0	1	

pri čemu je korištena sljedeća oznaka:

$$y = c_{ij}\lambda + k_{ij} \tag{5.4}$$

gdje je $\lambda = \sigma + j\omega$ vlastita vrijednost u kojoj ω predstavlja prigušenu vlastitu frekvenciju a σ je omjer prigušenja. Koeficijenti c_{ij} i k_{ij} su svezani koeficijenti prigušenja i krutosti ležaja, dok su J_a i J_p dijametralni i polarni momenti inercije masa diska.

b

5.2.2.2. Prijenosna matrica polja

Matrica polja za gredni segment konstantnog poprečnog presjeka, koji predstavlja fleksibilnu vezu između točke *i* na svojem lijevom kraju i točke *i*+1 na svome desnome kraju, povezuje vektor stanja lijevog dijela *i*+1-vog segmenta i desnog dijela *i*-tog segmenta:

$$\{z_{i+1}\}^{L} = [P_i]\{z_i\}^{D}$$
(5.5)

Uz pretpostavku uzimanja u obzir inercijskih efekata greda u obliku krutih diskova u krajnjim točkama polja, u slučaju polja bit će različiti pomaci u krajnjim točkama polja, te matrica polja glasi [73]:

$$[P_{i}] = \begin{bmatrix} 1 & 0 & 0 & l & \frac{l^{2}}{2EI} & 0 & 0 & -\frac{l^{3}(1-6\varepsilon)}{6EI} \\ 0 & 1 & -l & 0 & 0 & -\frac{l^{2}}{2EI} & -\frac{l^{3}(1-6\varepsilon)}{6EI} & 0 \\ 0 & 0 & 1 & 0 & 0 & \frac{l}{EI} & \frac{l^{2}}{2EI} & 0 \\ 0 & 0 & 0 & 1 & \frac{l}{EI} & \frac{l^{2}}{2EI} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -\frac{l^{2}}{2EI} \\ 0 & 0 & 0 & 0 & 1 & l & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & l & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.6)

gdje uporabljeni izraz

$$s = \frac{EI}{\kappa GAl^2}$$

označava da se radi o Timoshenkovom grednom elementu kod kojega su uzete u obzir i posmične deformacije u obliku reduciranog poprečnog presjeka grede (4.76).

5.2.2.3 Prijenosna matrica sustava

Sve različite analize rotorskog sustava, bilo da se radi o slobodnim ili prisilnim vibracijama zahtijevaju formiranje prijenosne matrice sustava. Prijenosna matrica sustava služi za transformaciju vektora stanja lijeve rubne točka u vektor stanja desne rubne točke. Ona se dobiva uzastopnim množenjem slijednih matrica polja i matrica točaka rotordinamičke strukture počevši od lijeve rubne točke 1, (sl.1), zaključno s desnom rubnom točkom *n*, što može biti prikazano slijedećim relacijama:

$$\{z_1\}^D = [T_1]\{z_1\}^L; \{z_2\}^L = [P_1]\{z_1\}^D; \vdots \{z_n\}^L = [P_{n-1}]\{z_{n-1}\}^D; \{z_n\}^D = [T_n]\{z_n\}^L;$$
 (5.8)

ili

$$[z_n]^D = [U] \{z_1\}^L$$
(5.9)

gdje je [U] prijenosna matrica sustava koja iznosi:

$$[U] = [T_n [P_{n-1}] [T_{n-1}] \dots [T_2 [P_1] [T_1]]$$
(5.10)

5.2.3. Procedure rješavanja vibracijskih problema rotordinamike pomoću metode prijenosnih matrica

Prijenosna matrica sustava može biti uporabljena za analiziranje različitih rotordinamičkih problema. To uključuje određivanje prigušenih kružnih brzina precesije i precesijskih formi vibriranja, neprigušenih kritičnih brzina i formi vibriranja te sinhronog odziva debalansa.

5.2.3.1. Prigušene brzine precesije i precesijske forme vibriranja

Pri određivanju prigušenih brzina precesije i precesijskih formi vibriranja potrebno je prvo odrediti prijenosnu matricu sustava [U], te nakon postavljanja vektora rubnih uvjeta za specifične načine oslanjanja rotorovih rubova, izvršiti preslagivanje i particiju sustava jednadžbi (5.9) tako da nulti uvjeti u vektoru rubnih uvjeta zauzimaju njegov donji dio. Tada iz matrične jednadžbe:

$$\begin{cases} \{z_n\}^D \\ \cdots \\ \{0\} \end{cases} = \begin{bmatrix} [U_{11}] & \vdots & [U_{12}] \\ \cdots & \cdots & \cdots \\ [U_{21}] & \vdots & [U_{22}] \end{bmatrix} \begin{cases} \{z_1\}^L \\ \cdots \\ \{0\} \end{cases}$$
(5.11)

slijedi sustav homogenih jednadžbi:

$$[U_{21}(\lambda)]\{z_1\}^L = \{0\}$$
(5.12)

te za netrivijalne vrijednosti rješenja vektora $\{z_l\}^L$ (vlastiti vektori) mora biti ispunjen uvjet nulte vrijednosti determinante podmatrice $[U_{2l}]$. Na taj se način dobivaju vlastite vrijednosti (vlastite

frekvencije) prigušenih vibracija rotordinamičkog sustava λ_i . Postoji nekoliko procedura za određivanje vlastitih vrijednosti koje se rabe u sklopu metode prijenosnih matrica od kojih je najčešća Newton-Raphsonova metoda i metoda određivanja korijena karakterističnog polinoma.

5.2.3.2 Neprigušene kritične brzine i pripadne forme vibriranja

Ukoliko se radi o neprigušenom rotoru s izotropnim ležajevima, orbite njegovih formi vibriranja su kružne u odnosu na fiksni XYZ koordinatni sustav dok se u rotirajućem x'y'z' koordinatnom sustavu koji rotira brzinom jednakom brzini precesije forma vibriranja pojavljuje kao fiksna krivulja u ravnini koja sadrži os z'. Zbog osne simetrije moguće je smanjiti red jednadžbi sustava na polovicu uzimajući ravninu pojavljivanja forme vibriranja u jednoj od ravnina gdje je os z' sadržana, npr. u ravnini x'z'. Matrične jednadžbe (5.2) i (5.5) su sada:

$$\begin{cases} z_i \end{pmatrix}^{D} = \begin{bmatrix} T_i' \end{bmatrix} \begin{cases} z_i \end{pmatrix}^{L} \\ z_{i+1} \end{pmatrix}^{L} = \begin{bmatrix} P_i' \end{bmatrix} \begin{cases} z_i \end{pmatrix}^{D} \end{cases}$$
(5.13)

gdje je vektor stanja definiran kao:

$$\left\{\boldsymbol{z}_{i}^{\prime}\right\} = \left\{\boldsymbol{u}^{\prime} \ \boldsymbol{\beta}^{\prime} \ \boldsymbol{M}_{y^{\prime}} \ \boldsymbol{Q}_{x^{\prime}}\right\}$$
(5.14)

a matrice točke i polja su:

$$\begin{bmatrix} T_{i}' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\omega^{2} (J \pm J_{p}) & 0 \\ k - m\omega^{2} & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{i} \quad \begin{bmatrix} P_{i}' \end{bmatrix} = \begin{bmatrix} 1 & I & \frac{l^{2}}{2EI} & -\frac{l^{3}(1 - 6\varepsilon)}{6EI} \\ 0 & 1 & \frac{l}{EI} & -\frac{l^{2}}{2EI} \\ 0 & 0 & 1 & -l \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.15)

pri čemu se negativan predznak uzima za slučaj određivanja naprednih kritičnih brzina a pozitivan predznak kada se određuju natražne kritične brzine. Ukoliko gredni segment ne rotira, potrebno je u izrazu (5.15) uzeti $J_p=0$. Daljnji postupak je identičan postupku opisanom u prethodnom potpoglavlju te se dobivaju realne vlastite vrijednosti ω_j što su zapravo napredne i natražne kritične brzine. Pripadne forme vibriranja dobivaju se proizvoljnim odabirom lijevog rubnog vektora te sukcesivnim množenjem matrica polja i točaka uz dobivanje vektora stanja za sve točke rotora. Konačno, dobivene forme vibriranja mogu se normalizirati po želji.

5.2.3.3 Odziv debalansa

Za određivanje stacionarnog odziva rotora kod prisilnih vibracija pobuđenih debalansom rabi se prošireni vektor stanja u točki koji se sastoji od vektora stanja (5.1) proširenog jedinicom:

$$\{z^{*}\}_{\Omega} = \{u^{*} \ v^{*} \ \alpha^{*} \ \beta^{*} \ M_{y}^{*} \ M_{x}^{*} \ Q_{y}^{*} \ Q_{x}^{*} \ 1\}^{T},$$
(5.16)

gdje zvjezdica označava tzv. kompleksnu amplitudu pa vrijedi npr. $u = \operatorname{Re}(u^* e^{j\Omega})$ itd. Matrične jednadžbe su sada:

68

R Žigulić-Doktorska disertacija

Dinamika rotora u kliznim ležajevima

$$\begin{cases} z_i^* \}_{\Omega}^{D} = [T_i]_{\Omega} \{ z_i^* \}^{L} \\ \{ z_{i+1}^* \}_{\Omega}^{L} = [P_i]_{\Omega} \{ z_i^* \}^{D} \end{cases}$$

$$(5.17)$$

U tom slučaju matrica točke i matrica polja poprimaju sljedeće vrijednosti:

$$[P_{i}]_{\alpha} = \begin{bmatrix} \vdots & 0 \\ P_{i} \end{bmatrix} \stackrel{!}{\underset{\alpha}{=}} \stackrel{!}{\underset{\alpha}{=}} \stackrel{0}{\underset{\alpha}{=}} \stackrel{!}{\underset{\alpha}{=}} \stackrel{0}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=}} \stackrel{0}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=}} \stackrel{0}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=}} \stackrel{0}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=}} \stackrel{0}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=}} \stackrel{0}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=}} \stackrel{0}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=} \stackrel{.}{\underset{\alpha}{=}} \stackrel{.}{\underset{\alpha}{=} \underset{\alpha}{=} \stackrel{.}{\underset{\alpha}{=} \stackrel{.}{\underset{\alpha}{=} \underset{\alpha}{=} \overset{\ldots}{\underset{\alpha}{=} \underset{\alpha}{=} \underset$$

gdje su $a_{x'}$ i $a_{y'}$ komponente vektora položaja središta masa diska {a} u odnosu na pomični koordinatni sustav, sl. 2.1.

5.3. Konačno elementni model

Egzaktno rješenje varijacijskog problema (4.38) pod unaprijed definiranim rubnim i početnim uvjetima moguće je naći samo za uski krug elastodinamičkih problema. Stoga se uobičajeno pribjegava traženju vektora aproksimativnih rješenja $\{u\}$ koji pod rubnim i početnim uvjetima minimizira (čini stacionarnim) [74] funkcional (4.38). Pri tome su predlagane i koriste se razne metode koje se već godinama pokazuju manje ili više uspješnima.

Jedna od takvih metoda je Rayleigh-Ritzova metoda čija primjena rezultira pretvaranjem raspodijeljenog sustava s beskonačno mnogo stupnjeva slobode, koji se opisuje parcijalnim diferencijalnim jednadžbama, u sustav s konačnim brojem stupnjeva slobode koji može biti opisan običnim diferencijalnim jednadžbama. Prvu pojednostavljenu aproksimaciju vibracijskog pomaka, iznio je lord Rayleigh a Ritz je kasnije generalizirao ovu metodu iznoseći aproksimaciju polja pomaka u ovisnosti o nekoliko različitih funkcija, od kojih je svaka bila povezana s različitim stupnjem slobode gibanja i zadovoljavala nezavisno od drugih funkcija rubne uvjete, što može biti napisano kao:

$$\{u(x_j,t)\} = \sum_{i=1}^{N} \psi_i(x_j) q_i(t) \quad , \quad j = 1...3$$
(5.20)

Pomoću jednadžbe (5.20) moguće je dakle prikazati kontinuiranu nepoznanicu $\{u\}$ pomoću konačnog broja N funkcija oblika ψ_i , koje su isključivo funkcije vektora položaja, i N generaliziranih koordinata q_i koje su funkcije vremena. Funkcije oblika ψ_i određuju se na temelju uvjeta da funkcional nad kojim se primjenjuje Hamiltonov princip mora biti stacionaran. Problem ovog postupka leži u tome da jednadžba (5.20) mora zadovoljiti sve rubne uvjete unutar cjelokupnog područja definicije funkcionala (npr. unutar cijelog strukturnog elementa). To za kompliciranije strukturne elemente često nije izvodivo [75].

Galerkinova metoda također slijedi iz izraza (5.20). On se pak ne uvodi u pripadni funkcional već u pripadnu diferencijalnu jednadžbu, s pripadnim rubnim i početnim uvjetima, te je ne ispunjava u potpunosti što rezultira ostatkom. Uvjet zadovoljavajućeg aproksimativnog rješenja je ovdje taj, da integral vagan s jednom vagajućom funkcijom unutar posmatranog područja (strukturnog elementa) teži ka nuli tj. da bude unutar propisane tolerancije. Ova metoda se često puta naziva i metodom vaganih ostataka. I ovdje je potrebno odrediti funkcije oblika ψ_1 pri čemu trebaju zadovoljavanja sve rubne uvjete kao i kod Rayleight - Ritzove aproksimacije.

Metoda konačnih elemenata je numerička metoda temeljena na fizičkoj diskretizaciji kontinuuma. Osnovni princip ove metode sastoji se u dijeljenju kontinuuma na konačni broj nepreklapajućih konačnih elemenata jednostavne geometrije (linijski segment u slučaju 1-D kontinuuma, trokuti ili četverokuti u slučaju 2-D kontinuuma, tetrahedroni ili hexahedroni u 3-D slučaju), koji se sijeku u čvorovima mreže konačnih elemenata. Na taj način se kontinuum s beskonačno mnogo stupnjeva slobode gibanja zamjenjuje s diskretnim modelom koji može biti opisan s konačnim broj stupnjeva slobode. Unutar područja konačnog elementa, interpoliraju se funkcije pomaka budući se u tehnici uobičajeno rabi metoda pomaka. Razlog tomu su poteškoće u izboru funkcija naprezanja tako da svi uvjeti budu zadovoljeni te složeno izvođenje globalne matrice fleksibilnosti. Interpolacijske funkcije moraju duž rubova elemenata zadovoljavati određene rubne uvjete da bi se diskretizirani model što više približio ponašanju kontinuiranog sustava. Osim toga moraju interpolacijske funkcije zadovoljavati i druge uvjete nužne za konvergenciju rješenja. Pri izvođenje algebarskih jednadžbi konačnih elemenata polazi se ili od diferencijalnih jednadžbi koje opisuju stanje u kontinuumu (Galjerkinova metoda) ili se primjenjuju varijacijske formulacije (Rayleight - Ritzova metoda). Pri tome se za najbolje vrijednosti interpolacijskih funkcija u čvoru odabiru one vrijednosti koje minimiziraju neki funkcional (npr. ukupnu energiju konačnog elementa kod Rayleight - Ritzove metode) ili minimiziraju ostatak (Galjerkinova metoda). Nakon izvođenja jednadžbi za konačni element, transformacijskim se postupkom izvode globalne jednadžbe za diskretizirani model. Pomoću izračunatih čvornih veličina moguće je upotrebom poznatih teorijskih relacija odrediti sve veličine koje su potrebne za analizu opisanog kontinuiranog sustava. Osnovna prednost korištenja ove metode leži u činjenici da kontinuum može imati bilo kakav oblik, proizvoljno definirane rubne uvjete i proizvoljno definirano vanjsko opterećenje, što kod analitičkih metoda često pretstavlja nepremostive poteškoće.

5.3.1. Ravninski rotordinamički gredni konačni element

Slika 5.3 prikazuje segment Bernoulli-Eulerove grede modeliran grednim konačnim elementom. Komponente čvornih pomaka ovakvog konačnog elementa, prema metodi pomaka, moguće je svrstati u sljedeći vektor:

$$\{q^{e}\}^{T} = \{u_{1} \alpha_{1} u_{2} \alpha_{2}\}$$
(5.21)

SI. 5.3. Ravninski rotordinamički gredni konačn element

 $q_2 = \alpha_1$ i $q_3 = \alpha_2$, kutni (rotacijski) pomaci njegovih čvorova. Navedene četiri komponente čvornih pomaka su u stvari poopćene koordinate grednog konačnog elementa, čime se Bernoulli - Eulerova greda kao kontinuum s beskonačnim brojem stupnjeva slobode gibanja zapravo pretvara u konačni element s četiri stupnja slobode gibanja.

Rubni uvjeti konačnog elementa su definirani na sljedeći način:

$$r(0,t) = q_1 \quad , \frac{\partial r}{\partial z}(0,t) = q_2 \quad , r(l,t) = q_3 \quad , \frac{\partial r}{\partial z}(l,t) = q_3$$

$$(5.23)$$

 $r(s,t) = \sum \psi_{i}(s) q_{i}(t)$

pomaci čvorova konačnog elementa, dok su

(5.22)

Kako bi rubni uvjeti (5.23) u izrazu (5.22) bili zadovoljeni, moraju funkcije oblika $\psi(s)$ imati sljedeće vrijednosti u čvornim točkama:

$$\begin{aligned}
\psi_1(0) &= 1 \quad \psi_2(0) = 0 \quad \psi_3(0) = 0 \quad \psi_4(0) = 0 \\
\psi_1'(0) &= 0 \quad \psi_2'(0) = 1 \quad \psi_3'(0) = 0 \quad \psi_4'(0) = 0 \\
\psi_1(l) &= 0 \quad \psi_2(l) = 0 \quad \psi_3(l) = 1 \quad \psi_4(l) = 0 \\
\psi_1'(l) &= 0 \quad \psi_2'(l) = 0 \quad \psi_3'(l) = 0 \quad \psi_4'(l) = 1
\end{aligned}$$
(5.24)

Budući su poznate četiri čvorne vrijednosti za svaku funkciju oblika i njezinu derivaciju i pretpostavljajući jednadžbu elastične linije u obliku polinoma, potrebno je da funkcije oblika budu najmanje kubne funkcije tj. polinomi trećeg reda:

$$\psi_i(s) = a_i + b_i s + c_i s^2 + d_i s^3$$
, $(i = 1, 2, 3, 4)$ (5.25)

Vrijednosti konstanti a_i , b_i , c_i i d_i određuju se uvrštavanjem vrijednosti funkcija oblika na rubovima konačnog elementa u funkcije (5.24) i njihove derivacije. Konačno dobivaju se izrazi za funkcije oblika kao, sl.5,4,:

$$\psi_{1}(s) = 1 - 3\frac{s^{2}}{l^{2}} + 2\frac{s^{3}}{l^{3}}, \quad \psi_{2}(s) = s - 2\frac{s^{2}}{l} + \frac{s^{3}}{l^{2}}, \quad (5.26)$$

$$\psi_{1}(s) = 3\frac{s^{2}}{l^{2}} - 2\frac{s^{3}}{l^{3}}, \quad \psi_{4}(s) = -\frac{s^{2}}{l} + \frac{s^{3}}{l^{2}}.$$

te se slažu u vektor funkcija oblika koji za ravninski gredni konačni element glasi:

$$\{\psi^{e}\}^{T} = \begin{cases} \psi_{1}(s) \\ \psi_{2}(s) \\ \psi_{3}(s) \\ \psi_{4}(s) \end{cases} = \begin{cases} 1 - 3\frac{s^{2}}{l^{2}} + 2\frac{s^{3}}{l^{3}} \\ s - 2\frac{s^{2}}{l} + \frac{s^{3}}{l^{2}} \\ 3\frac{s^{2}}{l^{2}} - 2\frac{s^{3}}{l^{3}} \\ -\frac{s^{2}}{l} + \frac{s^{3}}{l^{2}} \end{cases}$$
(5.27)

Aproksimacijsko rješenje pomaka u polju konačnog elementa tada poprima oblik:

$$r(s,t) = u_1(t) \{ 1 - 3s^2/l^2 + 2s^3/l^3 \} + u_2(t) \{ s - 2s^2/l + s^3/l^2 \}$$

$$+ u_3(t) \{ 3s^2/l^2 - 2s^3/l^3 \} + u_4(t) \{ -s^2/l + s^3/l^2 \}.$$
(5.28)

Kinetička energija Bernoulli-Eulerove grede je ranije definirana izrazom (4.51) i upotrebom Rayleight-Ritzove aproksimacije se dobiva:

$$E_{k}^{e} = \frac{m}{2} \int_{0}^{t} \{\dot{q}^{e}\}^{T} \{\psi^{e}\}^{T} \{\psi^{e}\}^{T} \{\dot{q}^{e}\} dz + \frac{m i_{A}^{2}}{2} \int_{0}^{t} \{\dot{q}^{e}\}^{T} \frac{d\{\psi^{e}\}^{T}}{dz} \frac{d\{\psi^{e}\}^{T}}{dz} \{\dot{q}^{e}\} dz$$
(5.29)

te se nadalje može pisati u obliku:

$$E_{k}^{e} = \frac{1}{2} \left\{ \dot{q}^{e} \right\}^{T} \left[m_{T}^{e} \right] \left\{ \dot{q}^{e} \right\} + \frac{1}{2} \left\{ \dot{q}^{e} \right\}^{T} \left[m_{R}^{e} \right] \left\{ \dot{q}^{e} \right\}$$
(5.30)

gdje matrice $[m_T^e]$ i $[m_R^e]$ predstavljaju matricu translacijskih i matricu rotacijskih masa ravninskog grednog konačnog elementa:

$$m_{T}^{e} = m_{0}^{\prime} \{\psi^{e}\}^{T} \{\psi^{e}\} dz \quad , \quad \left[m_{R}^{e}\right] = mi_{A}^{2} \int_{0}^{\prime} \frac{d\{\psi^{e}\}^{T}}{dz} \frac{d\{\psi^{e}\}}{dz} dz \tag{5.31}$$

Integriranjem podintegralnih funkcija u izrazima (5.32) dobivaju se matrice masa ravninskog grednog konačnog elementa kako slijedi:

$$m_{T}^{e} = \frac{ml}{420} \begin{bmatrix} 156 & 22l & 54 & -13l \\ 22l & 4l^{2} & 13l & -3l^{2} \\ 54 & 13l & 156 & -22l \\ -13l & -3l^{2} & -22l & 4l^{2} \end{bmatrix}.$$
(5.32)

za translacijsku matricu masa, te

$$[m_{R}^{e}] = \frac{m i_{A}^{2}}{30 l} \begin{bmatrix} 36 & 3l & -36 & 3l \\ 3l & 4l^{2} & -3l & -l^{2} \\ -36 & -3l & 36 & -3l \\ 3l & -l^{2} & -3l & 4l^{2} \end{bmatrix}$$
(5.33)

za rotacijsku matricu masa ravninskog grednog konačnog elementa.

Potencijalna energija deformacije Bernoulli-Eulerove grede slijedi iz izraza (4.49) iz čega se prema teoriji konačnih elemenata dobiva:

$$E_{pume} = EI \int_{0}^{t} \{q^{e}\}^{T} \left(\frac{d^{2} \{\psi^{e}\}}{dz^{2}}\right)^{T} \frac{d^{2} \{\psi^{e}\}}{dz^{2}} \{q^{e}\} dz$$
(5.34)

te slijedi:

$$E_{pum} = \frac{1}{2} \{ q^e \}^T [k^e] \{ q^e \},$$
(5.35)

na temelju čega se integracijom podintegralnih funkcija dobivaju elementi matrice krutosti ravninskog grednog konačnog elementa:

$$[k^{e}] = \frac{2EI}{l^{3}} \begin{bmatrix} 6 & 3l & -6 & 3l \\ 3l & 2l^{2} & -3l & l^{2} \\ -6 & -3l & 6 & -3l \\ 3l & l^{2} & -3l & 2l^{2} \end{bmatrix}.$$
(5.36)

Ukoliko na Bernoulli-Eulerovu gredu djeluju i vanjske sile tada se njihov doprinos ukupnoj energiji grede manifestira kroz potencijalnu energiju grede. Ako je gustoća porazdijeljenog opterećenja p(s,t) a gustoća porazdijeljenog momenta q(s,t) te ako je $\{f_r\}$ vektor rubnog opterećenja koji sadrži reakcijske sile i momente koji rezultiraju iz međudjelovanja grednog konačnog elementa s susjednim konačnim elementima i iznosi $\{f_r\} = \{\overline{Q}(0,t) \ \overline{M}(0,t) \ \overline{Q}(l,t) \ \overline{M}(l,t)\}$, to se potencijalna energija vanjskog opterećenja grede može napisati kao:

$$E_{pvan} = -\int_{0}^{t} p(s,t) r(s,t) dz - \int_{0}^{t} q(s,t) \frac{\partial r(s,t)}{\partial z} dz - \{f_r\} \{q^e\}$$
(5.37)

Uvođenjem Rayleight-Ritzove aproksimacije, dobiva se:

R Žigulić-Doktorska disertacija

$$\mathcal{E}_{pram} = -\{q^{*}\}^{T}\{g^{*}\} - \{f_{r}\}\{q^{*}\}$$
(5.38)

75

pri čemu je $\{g^e\}$ vektor vanjskog opterećenja koji iznosi:

$$\left\{g^{*}\right\} = \int_{0}^{t} \left\{\left\{\psi^{*}\right\}^{T} p(s,t) + \frac{\mathrm{d}\left\{\psi^{*}\right\}^{T}}{\mathrm{d}z} q(s,t)\right\} \mathrm{d}z$$

$$(5.39)$$

Sada se može definirati Lagrangeova funkcija, uzimajući u obzir ukupnu potencijalnu energiju, kao:

$$L = E_{k} - E_{p} = \frac{1}{2} \{ \dot{q}^{e} \}^{T} [m^{e}] \{ \dot{q}^{e} \} - \frac{1}{2} \{ q^{e} \}^{T} [k^{e}] \{ q^{e} \} + \{ q^{e} \}^{T} \{ g^{e} \} + \{ f_{e} \} \{ q^{e} \}$$
(5.40)

Prema ranije izvedenoj Lagrangeovoj jednadžbi za jednodimenzionalni kontinuirani sustav, a koja je definirana izrazom (4.42), slijede jednadžbe gibanja za ravninski rotordinamički gredni konačni element opterećen vanjskim silama:

$$[m^{e}][\vec{q}^{e}] + [k^{e}][q^{e}] = \{f^{e}\},$$
(5.41)

gdje se vektor $\{f^e\}$ naziva vektorom poopćene sile i jednak je:

$$\{f^{e}\} = \{g^{e}\} + \{f_{r}\}$$
(5.42)

5.3.2. Prostorni rotordinamički gredni konačni element

Sl. 5.5 Prostorni rotordinamički gredni konačni element

Prostorni rotordinamički gredni konačni element (sl. 5.5) nastaje sparivanjem dva ravninska rotordinamička gredna konačna elementa, te omogućuje uvođenje pojma giroskopskog efekta. Komponente čvornih pomaka (poopćene koordinate) ovakvog konačnog elementa su jednake:

$$\{q^{*}\}^{T} = \{u_{1} v_{1} \alpha_{1} \beta_{1} u_{2} v_{2} \alpha_{2} \beta_{2}\}$$
(5.43)

a prema Rayleight - Ritzovoj metodi moguće je pomake r(s,t) (u smjeru osi x) i p(s,t) (u smjeru osi y) u polju konačnog elementa definirati kao:

$$r(s,t) = q_1 \psi_1 + q_4 \psi_2 + q_5 \psi_3 + q_8 \psi_4$$

$$p(s,t) = q_2 \psi_1 - q_3 \psi_2 + q_6 \psi_3 - q_7 \psi_4$$
(5.44)

pri čemu $\psi_1...\psi_4$ odgovaraju ranije definiranim Hermiteovim polinomima ravninskog grednog konačnog elementa. Rotacijski se pomaci u polju konačnog elementa grede mogu dovesti u vezu s poopćenim koordinatama preko sljedećih izraza:

$$\beta(s,t) = \frac{\partial r(s,t)}{\partial s} = q_1 \psi_1' + q_4 \psi_2' + q_5 \psi_3' + q_8 \psi_4'$$

$$\alpha(s,t) = \frac{-\partial p(s,t)}{\partial s} = -q_2 \psi_1' + q_3 \psi_2' - q_6 \psi_3' + q_3 \psi_4'$$
(5.45)

Jednadžbe (5.44) i (5.45) mogu se izraziti u matričnom obliku kao:

$$\begin{aligned} r(s,t)\\ p(s,t) \end{bmatrix} &= \left[\Psi(s)^{e} \right] \left\{ q(t)^{e} \right\}^{T}, \qquad \begin{cases} \alpha(s,t)\\ \beta(s,t) \end{cases} = \left[\Gamma(s)^{e} \right] \left\{ q(t)^{e} \right\}^{T}, \end{aligned}$$

$$(5.46)$$

gdje je

$$\begin{bmatrix} \Psi^{*} \end{bmatrix} = \begin{bmatrix} \psi_{1} & 0 & 0 & \psi_{2} & \psi_{3} & 0 & 0 & \psi_{4} \\ 0 & \psi_{1} & -\psi_{2} & 0 & 0 & \psi_{3} & -\psi_{3} & 0 \end{bmatrix},$$

$$\begin{bmatrix} \Gamma^{*} \end{bmatrix} = \begin{bmatrix} \Gamma_{\alpha} \\ \Gamma_{\beta} \end{bmatrix} = \begin{bmatrix} 0 & -\psi_{1}^{*} & \psi_{2}^{*} & 0 & 0 & -\psi_{3}^{*} & \psi_{4}^{*} & 0 \\ \psi_{1}^{*} & 0 & 0 & \psi_{2}^{*} & \psi_{3}^{*} & 0 & 0 & \psi_{4}^{*} \end{bmatrix},$$

$$(5.47)$$

Kinetička energija prostornog rotordinamičkog grednog konačnog elementa izvodi se superponiranjem kinetičkih energija dvaju ravninskih rotordinamičkih grednih konačnih elemenata. Pri tome se najčešće, teorija Bernoulli-Eulerove grede, iznesena u poglavlju (4.5.1) proširuje teorijom krutog diska (poglavlje 3.5), budući se kinetička energija grede kao kontinuuma proširuje nekim elementima sfernog gibanja. To se uglavnom odnosi na giroskopski efekt Bernoulli-Eulerove grede, promatrane kao kruto tijelo, dok se dio kinetičke energije koji se odnosi na rotaciju oko uzdužne osi zanemaruje budući su torzijske vibracije rotordinamičkih sustava zaseban problem koji se uobičajeno tretira odvojeno od fleksijskih vibracija. Kinetička energija prostornog rotordinamičkog konačnog elementa tada ima oblik:

$$E_{k}^{e} = \frac{m}{2} \int_{0}^{t} \{\dot{q}^{e}\}^{T} \{\psi^{e}\}^{T} \{\psi^{e}\}^{dz} + \frac{\rho I_{u}}{2} \int_{0}^{t} \{\dot{q}^{e}\}^{T} \frac{d\{\Gamma^{e}\}^{T}}{dz} \frac{d\{\Gamma^{e}\}^{T}}{dz} \{\dot{q}^{e}\}^{dz} + -2\rho I_{u} \Omega \int_{0}^{t} \{q^{e}\}^{T} \{\Gamma_{u}\}^{T} \{\Gamma_{\mu}\}^{dz} \{\dot{q}^{e}\}^{dz}$$
(5.48)

gdje je m masa, a I_a dijametralni moment inercije površine poprečnog presjeka, po jedinici duljine konačnog elementa.

Kinetička energija prostorne Bernoulli-Eulerove grede, može se dalje pisati kao:

$$E_{k}^{e} = \frac{1}{2} \{ \dot{q}^{e} \}^{T} [m_{T}^{e}] \{ \dot{q}^{e} \} + \frac{1}{2} \{ \dot{q}^{e} \}^{T} [m_{R}^{e}] \{ \dot{q}^{e} \} - \Omega \{ q^{e} \} [m_{G}^{e}] \{ \dot{q}^{e} \}$$
(5.49)

gdje matrice $[m_r^e]$, $[m_R^e]$ i $[m_G^e]$ predstavljaju matricu translacijskih, rotacijskih i giroskopskih masa prostornog rotordinamičkog grednog konačnog elementa, a dobivaju se integriranjem podintegralnih funkcija prema sljedećem izrazu:

$$\left[m_{T}^{e}\right] = m_{0}^{\prime} \left\{\psi^{e}\right\}^{\prime} \left\{\psi^{e}\right\} dz, \quad \left[m_{R}^{e}\right] = \rho I_{a} \int_{0}^{\prime} \frac{d\left\{\Gamma^{e}\right\}^{\prime}}{dz} \frac{d\left\{\Gamma^{e}\right\}^{\prime}}{dz} dz, \quad \left[m_{G}^{e}\right] = 2\rho I_{a} \int_{0}^{\prime} \left\{\Gamma_{a}\right\}^{\prime} \left\{\Gamma_{b}\right\} dz$$

$$(5.50)$$

koje iznose

te

$$[m_{\tau}^{*}] = \frac{\rho A I}{420} \begin{bmatrix} 156 & & & & & \\ 0 & 156 & & & & & \\ 0 & -22I & 4I^{2} & & & & \\ 22L & 0 & 0 & 4I^{2} & & \\ 54 & 0 & 0 & 13I & 156 & & \\ 0 & 54 & -13I & 0 & 0 & 156 & & \\ 0 & 13I & -3I^{2} & 0 & 0 & 22I & 4I^{2} & \\ -13I & 0 & 0 & -3I^{2} & -22I & 0 & 0 & 4I^{2} \end{bmatrix},$$

$$[m_{\pi}^{*}] = \frac{mi_{\pi}^{2}}{30I} \begin{bmatrix} 36 & & & & & \\ 0 & 36 & & & & & \\ 0 & -3I & 4I^{2} & & & & \\ 3I & 0 & 0 & 4I^{2} & & \\ -36 & 0 & 0 & -3I & 36 & & \\ 0 & -36 & 3I & 0 & 0 & 36 & \\ 0 & -3i & -I^{2} & 0 & 0 & 3I & 4I^{2} \\ 3I & 0 & 0 & -I^{2} & -3I & 0 & 0 & 4I^{2} \end{bmatrix},$$

$$[m_{\pi}^{*}] = \frac{mi_{\pi}^{2}}{15I} \begin{bmatrix} 0 & & & & \\ -36 & 0 & & & \\ 0 & -36 & 3I & 0 & 0 & 3I & 4I^{2} \\ 3I & 0 & 0 & -I^{2} & -3I & 0 & 0 & 4I^{2} \end{bmatrix},$$

$$(5.53)$$

pri čemu je matrica giroskopskog efekta $[m_G^e]$ antisimetrična i može se prikazati kao:

$$\begin{bmatrix} m_G^e \end{bmatrix} = \begin{bmatrix} N \end{bmatrix} - \begin{bmatrix} N \end{bmatrix}^T.$$
(5.54)

Potencijalna energija deformacije prostornog rotordinamičkog grednog konačnog elementa je ponovo definirana izrazom (5.35) pri čemu se dobiva matrica krutosti:

$$\left[k^{*}\right] = EI_{a} \int_{0}^{l} \left(\frac{d^{2}\left[\psi^{*}\right]}{dz^{2}}\right)^{T} \frac{d^{2}\left[\psi^{*}\right]}{dz^{2}} dz = \frac{EI_{a}}{l^{3}} \begin{bmatrix} 12 & & & & \\ 0 & 12 & & & \\ 0 & -6l & 4l^{2} & & \\ 6l & 0 & 0 & 4l^{2} & & \\ -12 & 0 & 0 & -6l & 12 & & \\ 0 & -12 & 6l & 0 & 0 & 12 & \\ 0 & -6l & 2l^{2} & 0 & 0 & 6L & 4l^{2} & \\ 6l & 0 & 0 & 2l^{2} & -6l & 0 & 0 & 4l^{2} \end{bmatrix},$$
(5.55)

Matrica krutosti (5.55) izvedena je na osnovi Rayleight-Ritzove aproksimacije funkcije pomaka u potencijalnoj energiji deformacije Bernoulli-Eulerove grede. Što se pak tiče Timoshenkovog modela grede koji uključuje smične deformacije, poglavlje(4.5.2), potrebno je naglasiti da je i iz njezine potencijalne energije (izraz (4.77)), uvođenjem novih funkcija oblika, moguće izvesti matricu krutosti [76], koja glasi:

$$\begin{bmatrix} k^{e} \end{bmatrix} = \frac{EI_{a}}{(1+\chi)l^{2}} \begin{bmatrix} 12 & & & \\ 0 & 12 & & \\ 0 & -6l & (4+\chi)l^{2} & & \\ 6l & 0 & 0 & (4+\chi)l^{2} & & \\ -12 & 0 & 0 & -6l & 12 & & \\ 0 & -12 & 6l & 0 & 0 & 12 & \\ 0 & -6l & (2-\chi)l^{2} & 0 & 0 & 6L & (4+\chi)l^{2} \\ 6l & 0 & 0 & (2-\chi)l^{2} & -6l & 0 & 0 & (4+\chi)l^{2} \end{bmatrix},$$
(5.56)

gdje je koeficijent *a* funkcija površine reduciranog poprečnog presjeka zbog posmične deformacije koji je definiran kao:

$$\chi = \frac{12EI_a}{G\kappa Al^2}$$
(5.57)

Na prostorni rotordinamički gredni konačni element mogu djelovati i vanjske sile kao što su npr. sile nekonzervativnog polja vanjskih sila, reakcijske sile susjednih elemenata itd.) ali su Nelson i McVaugh u [77] pokazali da su za rotordinamičke probleme od neobične važnosti i vanjske sile porazdijeljenog masenog debalansa. Raspodjela masenog debalansa, u stacionarnim ravninama X-Z i Y-Z, prema izrazu (2.2) iznosi:

$$a_{x}(z) = a_{x}(z)\cos\Phi - a_{y}(z)\sin\Phi$$

$$a_{y}(z) = a_{x}(z)\sin\Phi - a_{y}(z)\cos\Phi$$
(5.58)

te su diferencijali sila debalansa jednaki:

$$dQ_{ax} = -\Omega^2 a_x (z) m dz$$

$$dQ_{ay} = -\Omega^2 a_y (z) m dz$$
(5.59)

Upotrebom principa virtualnog rada navedenih sila [78]:

$$\delta W = -\Omega^2 \delta \{q^v\}^T \left(\{Q_t^v\} \cos \Omega t + \{Q_s^v\} \sin \Omega t\right)$$
(5.60)

pri čemu vrijedi:

$$\mathcal{Q}_{c}^{*} = -\Omega^{2} \int_{0}^{t} m[\psi(z)]^{T} \begin{cases} a_{x}(z) \\ a_{y}(z) \end{cases} dz$$

$$\mathcal{Q}_{s}^{*} = -\Omega^{2} \int_{0}^{t} m[\psi(z)]^{T} \begin{cases} -a_{x}(z) \\ a_{x}(z) \end{cases} dz$$
(5.61)

dobiva se vektor poopéene sile prostornog rotordinamičkog grednog konačnog elementa:

$$\{f^*\} = \{Q^*_{\iota}\} \cos \Omega t + \{Q^*_{\iota}\} \sin \Omega t$$
(5.62)

Model prostornog rotordinamičkog konačnog elementa moguće je nadalje proširiti dodajući utjecaj unutarnjeg prigušenja na ponašanje elementa. Ovdje se pretpostavljaju dva oblika linearnog prigušenja [79]. Viskozni oblik prigušenja ovisan o linearnoj brzini, poglavlje 3.3.3.3.1., predstavljen je koeficijentom prigušenja η_v . Frekventno nezavisan ili histerezni oblik prigušenja, poglavlje 3.3.3.4., je pretstavljen koeficijentom gubitaka η_v koji je povezan s kutom gubitaka γ_u na način:

$$\gamma_{H} = Arc\sin\frac{\eta_{H}}{\sqrt{1 + \eta_{H}^{2}}}$$
(5.63)

Kombinacijom ova dva linearna modela naprezanja dobiva se konstitutivna relacija između aksijalnog naprezanja i aksijalne deformacije prostornog rotordinamičkog grednog konačnog elementa:

$$\sigma_{x} = E\left(\frac{\varepsilon_{x}}{\sqrt{1+\eta_{H}^{2}}} + \left(\eta_{F} + \frac{\eta_{H}}{\sqrt{1+\eta_{H}^{2}}}\right)\dot{\varepsilon}_{x}\right)$$
(5.64)

Ovako definirana aksijalna naprezanja izazivaju momente savijanja koji su povezani s drugom derivacijom vektora pomaka u polju konačnog elementa po prostornoj koordinati z:

$$\begin{cases} M_{z} \\ M_{v} \end{cases} = EI \begin{bmatrix} \frac{1 + \eta_{H}}{\sqrt{1 + \eta_{H}^{2}}} & \left(\frac{\eta_{H}}{\sqrt{1 + \eta_{H}^{2}}} + \Omega\eta_{v}\right) \\ \left(\frac{\eta_{H}}{\sqrt{1 + \eta_{H}^{2}}} + \Omega\eta_{v}\right) & -\frac{1 + \eta_{H}}{\sqrt{1 + \eta_{H}^{2}}} \end{bmatrix} \begin{cases} r'' \\ p'' \end{cases} + EI \begin{bmatrix} \eta_{v} & 0 \\ 0 & \eta_{v} \end{bmatrix} \begin{cases} \dot{r}'' \\ \dot{p}'' \end{cases}$$
(5.65)

što daje sljedeće izraze za diferencijal potencijalne energije deformacije te diferencijal disipacijske funkcije [79]:

$$dE_{pann}^{\prime} = \frac{1}{2} EI \left\{ \begin{matrix} \alpha' \\ \beta' \end{matrix} \right\} \left[\begin{matrix} \frac{1+\eta_{H}}{\sqrt{1+\eta_{H}^{2}}} & \left(\frac{\eta_{H}}{\sqrt{1+\eta_{H}^{2}}} + \Omega \eta_{V} \right) \\ \left(\frac{\eta_{H}}{\sqrt{1+\eta_{H}^{2}}} + \Omega \eta_{V} \right) & -\frac{1+\eta_{H}}{\sqrt{1+\eta_{H}^{2}}} \end{matrix} \right] \left\{ \begin{matrix} r'' \\ p'' \end{matrix} \right\} dz$$
(5.66)

79

Ser Sel

$$\mathrm{d}D^{*} = \frac{1}{2} EI \begin{cases} \dot{\alpha}' \\ \dot{\beta}' \end{cases} \begin{bmatrix} \eta_{V} & 0 \\ 0 & -\eta_{V} \end{bmatrix} \begin{cases} \dot{r}'' \\ \dot{p}'' \end{cases}$$

(5.67)

Upotrebom Hamiltonovog principa nad Lagrangeovom funkcijom, uz korištenje postupka za dobivanje poopćene sile u slučaju nekonzervativnih disipacijskih sila, poglavlje 3.3.3.3. dobivaju se sljedeće jednadžbe gibanja prostornog rotordinamičkog grednog konačnog elementa:

$$\begin{split} \left[\!\left[m_{r}^{e}\right]\!+\!\left[m_{B}^{e}\right]\!\right]\!\!\left[\!\dot{q}^{e}\right]\!+\!\left(\eta_{V}\left[\!k^{e}\right]\!-\Omega\left[\!m_{G}^{e}\right]\!\right]\!\!\left[\!\dot{q}^{e}\right]\!+ \\ +\!\left(\frac{1+\eta_{B}}{\sqrt{1+\eta_{B}^{2}}}\left[\!k^{e}\right]\!+\!\left(\eta_{V}\Omega+\frac{\eta_{B}}{\sqrt{1+\eta_{B}^{2}}}\right]\!\!\left[\!k^{e}_{e}\right]\!+\!\left]\!\left\{\!q^{e}\right\}\!=\!\left\{\!f^{e}\right\} \end{split}$$

$$(5.68)$$

pri čemu vrijedi:

$$k_{C}^{*} = \frac{EI}{I^{3}} \begin{bmatrix} 0 & & & & \\ -12 & 0 & & & \\ 6l & 0 & 0 & \text{anti sim} \\ 0 & 6l & -4l^{2} & 0 & & \\ 0 & -12 & 6l & 0 & 0 & \\ 12 & 0 & 0 & 6l & -12 & 0 & \\ 6l & 0 & 0 & -2l^{2} & -6l & 0 & 0 \\ 0 & 6l & -2l^{2} & 0 & 0 & -6l & -4l^{2} & 0 \end{bmatrix}$$

$$(5.69)$$

Antisimetrična matrica (5.69) se naziva cirkulacijskom matricom. Ona unosi utjecaj unutarnjeg prigušenja u proračun koje je jedan od glavnih uzročnika nestabilnosti numeričkih algoritama.

5.3.3. Kruti disk kao konačni element

SI. 5.6. Konačni element krutog diska

 $\{f^*\}$ koji u ovom slučaju ima 4 elementa. Primjenom Hamiltonovog principa nad Lagrangeovih funkcijom koja sadrži kinetičku energiju (3.77), u kojoj su zastupljene uzajamna i odnosna kinetička energija, i virtualnim radom vanjskih sila (5.60) dobivaju se sljedeće jednadžbe gibanja, ovog rotordinamičkog konačnog elementa, prikazane u matričnom obliku:

$$[m^{\varepsilon}]\!\!\left[\ddot{q}^{\varepsilon}\right]\!-\Omega\!\left[m^{\varepsilon}_{G}\right]\!\left[\dot{q}^{\varepsilon}\right]\!=\!\left\{f^{\varepsilon}\right\}\!.$$
(5.70)

U rotordinamici su inercijska svojstva diskova

dominantna u odnosu na njihova elastična svojstva,

koja se pri modeliranju zanemaruju. Konačni element

krutog diska definiran je pomoću četiri stupnja slobode

gibanja, sl. 5.6., i to pomoću dvije translacije u smjeru

osi X i Y te dvije rotacije α i β oko istih osi. Vektor

pomaka u čvoru konačnog elementa može tada biti

napisan kao $\{q^{\epsilon}\} = \{u, v, \alpha, \beta\}^T$. Na ovako definirani

konačni element mogu djelovati i vanjske sile

porazdijeljenog masenog debalansa. Ove sile izazivaju

isti efekat koji je opisan i kod prostornog grednog

rotordinamičkog konačnog elementa, izrazima

(5.58)...(5.62) a ogleda se kroz vektor poopćene sile

R Žigulić-Doktorska disertacija

pri čemu je matrica masa simetrična a matrica giroskopskog efekta antisimetrična. Dobivene matrice koje karakteriziraju kruti disk kao konačni element od velike su važnosti u rotordinamici a temelj su i za neke druge matrice, koje nastaju njihovom modifikacijom npr. matrice raznih ležajeva.

5.3.4. Ležajevi i brtve u rotodinamici

Jedan od vrlo bitnih utjecaja na rotordinamičke karakteristike turbostrojeva predstavljaju dinamičke karakteristike ležajeva i brtvi. To je stoga što je krutost sustava rotor-ležaj bitno određena krutošću ležaja i temelja ležaja budući ta krutost djeluje u serijskoj vezi s krutošću osovine. Osim o krutostima nosača ležajeva, kod ležajeva s uljnim filmom treba također voditi računa i o krutostima uljnog filma. Tako su npr. pri konstruiranju rotordinamičkog sustava vrlo bitni parametri odnosa između krutosti temelja ležajeva i osovine te prigušenja temelja ležajeva naspram unutarnjeg prigušenja rotora. Od velike važnosti za stabilnost precesije rotora su ponekad svezane krutosti i prigušenja.

U rotordinamici se najčešće koristi podjela [2] ležajeva u smislu mehanizma ostvarivanja sile. Prema toj podjeli postoje dva glavna tipa ležajeva i to su ležajevi s kotrljajućim elementima i klizni ležajevi. Kod ležajeva s kotrljajućim elementima ostvarenje sile je čisto elastično tj. ostvaruje se elastičnom deformacijom pri kontaktu kotrljajućih elemenata s strukturom kućišta ležajeva. Prikladan model za modeliranje ležajeva s kotrljajućim elementima je linearna ili nelinearna opruga s dva stupnja slobode gibanja po čvoru, s malo ili bez prigušenja. Kotrljajući ležajevi koriste se najviše kod plinskih turbina a naročito kod turbina zrakoplova. Takvi ležajevi daju ranu dijagnostiku na približavajuću grešku u radu. Upozorenje se namifestira u obliku vibracija visokih frekvencija i/ili buke. Matematički model rotora u kotrljajućim ležajevima za vrijeme kao i veza između harmonika vlastite frekvencije ležaja i vrste kvara na kotrljajućem ležaju te upute za prevenciju kvara na kotrljajućim ležajevima dane su u literaturi [80].

Kada brzine vrtnje prelaze određenu vrijednost, uobičajenu za rad s kotrljajućim ležajevima, ili zbog drugih razloga koriste se u radu klizni ležajevi. Signaliziranje približavajuće havarije kod takvih ležajeva je neočekivano i relativno kasno te bi na taj način ugrožavalo sigurnost eksploatacije (npr. kod leta aviona). Ovi ležajevi su u pravilu jeftiniji, imaju duži vijek trajanja te su tu, zbog malog koeficijenta trenja, gubici snage manji nego kod kotrljajućih ležajeva iste snage [2]. Uljni film u ležaju može biti generiran ili hidrostatički ili hidrodinamički. Kod hidrostatičkog ležaja rotor je nošen pomoću hidrostatskog tlaka uljnog filma dobava kojeg se vrši pomoću vanjske pumpe te krutost takvih ležajeva ovisi o veličini hidrostatskog tlaka. U hidrodinamičkom ležaju tlak se stvara na temelju relativnog gibanja kliznih površina.

U najnovije vrijeme javlja se tendencija zamjene korištenja konvencionalnih tipova ležajeva (klizni i kotrljajući ležajevi) magnetnim ležajevima, koji predstavljaju moguću budućnost rotordinamike. Osnovne prednosti su im da ne generiraju trošenje i ne trebaju podmazivanje budući rotor slobodno lebdi u magnetskom polju, bez kontakta s ležajem. Nadalje, njihove dinamičke karakteristike (krutosti i prigušenja) mogu se podešavati u širokom rasponu, zavisno od aplikacije.

80

Osnovni im je nedostatak da su za sada još uvijek relativno skupi i komplicirani pa se stoga koriste samo za specijalne primjene.

Magnetsku silu generiraju ili pomoću permanentnog magneta ili elektrodinamički ili elektromagnetski. Međutim, u magnetskom polju konstantne jakosti permanentnog magneta feromagnetska tijela ne mogu stabilno lebdjeti, a elektrodinamičke sile su uobičajeno premale ili ih je preteško generirati. Stoga je primjena elektromagnetskih sila u magnetskim ležajevima, s tehničkog stajališta, najisplativija.

Princip rada magnetskog ležaja ogleda se u činjenici da se pri lebdenju rotora u magnetskom polju registrira svako odstupanje rotora od referentnog položaja pomoću mjernog senzora. Pri tome se izmjereni signal transformira u kontrolni signal pomoću prikladnog kontrolnog zakona. Radi se o kompleksnim prijenosnim funkcijama koje povezuju vibracijski pomak rotora s jedne strane i pobudnu silu koja djeluje u tom vibracijskom sustavu a koje ovise o dinamičkim karakteristikama vibracijskog sustava kao što su krutosti i prigušenja rotora i magnetskog polja kao i o uzbudnoj frekvenciji. Takve se kompleksne prijenosne funkcije nazivaju dinamičkom mekoćom, definirajući odzivni pomak u odnosu na uzbudnu silu i dinamičkom krutošću, koja definira odzivnu silu u odnosu na uzbudni pomak kod tzv. kinematičke uzbude. Na taj način dobiveni kontrolni signal se pojačava i šalje u obliku kontrolne struje na namotaje elektromagneta koji predstavlja aktuator u tom regulacijskom lancu te se stvara magnetska sila koja vraća rotor u referentni položaj. Bez mehanizma povratne sprege kod magnetskog ležaja, došlo bi ili do pada osovina rotora ili do njezinog privlačenja od strane elektromagneta što bi dovelo do katastrofalnih posljedica u radu. Za potpuno nošenje krutog rotora koji, ukoliko se zanemare aksijalni pomaci, može biti opisan s dva stupnja slobode po svakom od dva ležaja, potrebna su dakle četiri magnetska aktuatora. Svaki kontrolni signal zavisi od ostalih što vodi tipičnoj viševarijabilnoj kontroli. Krutosti i prigušenja elektromagnetskog ležaja isključivo ovise o elektromagnetskim karakteristikama te u ovom radu neće biti detaljnije obrađivani.

U kombinaciji s magnetnim ležajevima koriste se na turbostrojevima i tzv. prihvatni ležajevi. Radi se o ležajevima s suhim trenjem koji nemaju funkciju nošenja rotora za vrijeme uobičajenog rada pri malim fleksijskim pomacima rotora. Jedino bi eventualno, pri velikim poprečnim pomacima rotora, moglo doći do kontakta s prihvatnim ležajem, međutim to je rijedak slučaj. Ipak, svi su aktivni magnetski ležajevi opskrbljeni s prihvatnim ležajevima kao sigurnosnim uređajima koji služe za zaštitu skupih magnetskih ležajeva od havarije do koje može doći zbog eventualnog nestanka struje ili kvara. Pri tome rotor pada na prihvatni ležaj zbog svoje težine i još se neko vrijeme u njemu okreće. Također i pri svakom zaustavljanju turbostroja, rotor se giba u prihvatnom ležaju budući nikada ne smije doći u kontakt s magnetnim ležajem zbog ranije spomenutog oštećivanja namotaja elektromagneta. Gibanje u ležaju s suhim trenjem se s druge strane javlja i kao posljedica ekstremnih uvjeta rada kliznih ležajeva gdje postoji mogućnost nestanka ulja ili drastičnog pada tlaka ulja pri čemu se pojavljuju problemi povezani s nosivošću uljnog filma a rotor dolazi u kontakt s statorom.

Brtve služe kod pumpi i turbina da bi se prostori različitih tlakova jedan nasuprot drugome izolirali. Prednost brtvi, koje se odlikuju malim frikcijskim gubitcima i malim trošenjem, uobičajeno prevladavaju nad njihovim glavnim nedostatkom a to gubici propuštanja (curenja) radnog medija, koji u visokoj mjeri mogu utjecati na stupanj iskoristivosti pumpe ili turbine. Kako bi se gubici propuštanja minimizirali moraju se reducirati zračnosti brtvi čak i ići na odabir kompliciranije geometrije brtvi (labirintne brtve...). Time se povećava utjecaj zračnosti brtvi na oblike vibriranja cjelokupnog turbostroja. Uslijed toga razlika tlaka koji vlada u prostorima odvojenim brtvom i rotacija osovine rotora stvaraju u tim prostorima turbulentno aksijalno i tangencijalno strujanje, kao i strujanje slično kliznim ležajevima samo sa radnim medijem.

5.3.4.1. Kuglični ležaj kao konačni element

Kako bi mogao biti kombiniran s ostalim konačnim elementima i integriran u cjelokupnu dinamičku analizu metodom konačnih elemenata definiran je i kuglični ležaj kao konačni element. Određivanje matrice krutosti izneseno je u literaturi [81] u skladu s sljedećim pretpostavkama:

 prsten ležaja zadržava svoj kružni oblik a elastične deformacije se dešavaju samo u kontaktnim točkama između kuglica i prstenova ležaja,

 ovisnost između elastične sile na kuglici i elastične deformacije u kontaktnim točkama može biti opisana pomoću Hertzovih jednadžbi,

- sile trenja u kontaktnim točkama i inercijske sile kuglica mogu se zanemariti,

krutost kugličnih ležajeva promatra se nezavisno o brzini vrtnje,

dok je asembliranje takve matrice krutosti u matricu krutosti sustava te primjena u dinamičkim sustavima prikazano u literaturi [82]. Mada su svojstva prigušenja kugličnih ležajeva neznatna, ona mogu biti za neke primjere od posebnog interesa te se formira i matrica prigušenja kugličnog ležaja. Svaka kuglica djeluje kao zasebni viskoelastični element s konstantnim koeficijentom prigušenja i može se prikazati [83] kroz Kelvin-Voightov model s nelinearnom oprugom. Svakom konačnom

elementu kugličnog ležaja, u rotordinamičkim modelima, pridružena su dva koincidentna čvora 1 i 2 s ukupno četiri stupnja slobode gibanja $\{q^e\} = \{u_1 \ v_2 \ u_2 \ v_2\}^T$, sl.5.7. (po dvije ortogonalne translacije unutarnjeg i vanjskog prstena) iako su komponente matrice krutosti i matrice prigušenja dane u [81] izvedene za generalni slučaj vezan uz dvanaest stupnjeva slobode po konačnom elementu. Pod gore navedenim uvjetima moguće je vektor opterećenja kugličnog elementa $\{F_{\kappa}^{e}\}$ prikazati kao nelinearnu analitičku funkciju vektora pomaka $\{q\}$ i vektora brzina $\{\dot{q}\}$. Ako se vektor $\{F_{\kappa}^{e}\}$ razvije u Taylorov red u okolišu ravnotežnog položaja, moguće je kroz njegovu parcijalnu diferencijaciju po poopćenim koordinatama, dobiti simetričnu matricu krutosti $[k^{e}]$ i simetričmu matricu prigušenja $[c^{e}]$ konačnog elementa kugličnog ležaja čiji su elementi:

Sl. 5.7. Kuglični ležaj kao konačni element

$$k_{ij} = \frac{\partial F_{km}}{\partial q_j} , \quad c_{ij} = \frac{\partial F_{km}}{\partial \dot{q}_j} , \quad i, j = 1...4$$
(5.72)

te diferencijalna jednadžba gibanja kugličnog ležaja kao konačnog elementa glasi:

$$\begin{vmatrix} c_{XX} & c_{XY} & -c_{XX} & -c_{XY} \\ c_{XX} & c_{XY} & -c_{XX} & -c_{XY} \\ -c_{XX} & -c_{YY} & -c_{YX} & -c_{YY} \\ -c_{XX} & -c_{YY} & c_{XX} & c_{XY} \\ -c_{YX} & -c_{YY} & c_{YX} & c_{YY} \end{vmatrix} \begin{vmatrix} \dot{u}_{1} \\ \dot{v}_{1} \\ \dot{u}_{2} \\ \dot{v}_{2} \end{vmatrix} + \begin{vmatrix} k_{XX} & k_{XY} & -k_{XY} & -k_{YY} \\ -k_{XX} & -k_{YX} & k_{XX} & k_{XY} \\ -k_{YX} & -k_{YY} & k_{YX} & k_{YY} \end{vmatrix} \begin{vmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \end{vmatrix} = \begin{cases} f_{XY} \\ f_{YY} \\ f_{YY} \\ f_{YY} \end{vmatrix}$$
(5.73)

ili skraćeno:

$$\left[c^{c}\right]\left\{\dot{g}^{e}\right\} + \left[k^{e}\right]\left\{g^{e}\right\} = \left\{f^{e}\right\}$$

$$(5.74)$$

gdje je s $\{f^{\epsilon}\}$ označen vektor (4x1) vanjskog opterećenja kugličnog ležaja u čvorovima 1 i 2.

5.3.4.2. Klizni ležajevi kao konačni elementi

Od kliznih ležajeva u rotordinamici najviše se koriste radijalni klizni ležajevi s cilindričnim provrtima i nekružnim poprečnim presjecima budući ovakvi poprečni presjeci u odnosu na kružne poprečne presjeke onemogućavaju pojavu samouzbudnih vibracija te time osiguravaju znatno stabilniji rad. Ova se teorija temelji na sljedećim postavkama:

- uljni film je bezmasan i nestlačiv,
- uljni fim je Newtonovski,
- strujanje je laminarno,
- tlak uljnog filma je konstantan u radijalnom smjeru,
- brzina strujanja u radijalnom smjeru se zanemaruje,
- gradijenti brzina u radijalnom smjeru su mnogo veći od gradijenata brzina u tangencijalnom i aksijalnom smjeru,
- tangenenjamoni i aksijamoni sinjeru,
- debljina uljnog filma je mala u odnosu na radijus kliznog ležaja,
- površine rotora i provrta ležaja su glatke i krute.

Matematički model za rješavanje polja bezdimenzijskog tlaka P u takvim ležajevima temelji se na Reynoldsovoj jednadžbi koja glasi:

$$\frac{\partial}{\partial \varphi} \left(H^3 \frac{\partial P}{\partial \varphi} \right) + \frac{\partial}{\partial \zeta} \left(H^3 \frac{\partial P}{\partial \zeta} \right) = 6 \left[\frac{\partial \overline{H}}{\partial \varphi} - 2 \frac{\dot{\varepsilon}}{\Omega} \cos(\varphi - \gamma) + \left(1 - 2 \frac{\dot{\gamma}}{\Omega} \right) \varepsilon \sin(\varphi - \gamma) \right]$$
(5.75)

Za definiranje bezdimenzijske debljine uljnog filma sl. 5.8., koriste se dva pristupa. Prvi pristup je lokalni, u odnosu na centar svakog segmenta ležaja, [84], gdje se dobiva sljedeći izraz:

$$H(\varphi) = D_0 + D_1 \cos(\varphi) + D_2 \sin(\varphi) \qquad (5.76)$$

gdje su D_0 , D_1 i D_2 koeficijenti definirani na sljedeći način:

$$D_0 = \frac{R_s - R}{h_0},$$

$$D_1 = -(D_0 - 1)\cos\varphi_s - \varepsilon\cos(\phi - \gamma - \varphi_s) \quad (5.77)$$

$$D_2 = -(D_0 - 1)\sin\varphi_s + \varepsilon\sin(\phi - \gamma - \varphi_s)$$

Drugi pristup je globalni i kod njega se bezdimenzijska debljina uljnog filma definira u

odnosu na globalnu os X. Uvođenjem elementarne transformacije $\overline{\varphi} = \phi - \varphi_s + \varphi$, sl.5.8., dobiva se sljedeća relacija:

$$H(\overline{\varphi}) = D_0 - (D_0 - 1)\cos(\overline{\varphi} - \phi) - \varepsilon\cos(\overline{\varphi} - \gamma)$$
(5.78)

Posljednji pristup je pogodniji za korištenje u proračunu bezdimenzijskih krutosti i prigušenja uljnog filma. Uvođenjem sljedeće transformacije, [85],

$$\chi^2 = H^3 , \ \pi = \chi P \tag{5.79}$$

moguće je jednadžbu (5.75) prikazati u sljedećem obliku:

$$\frac{\partial^2 \pi}{\partial \varphi^2} + \frac{\partial^2 \pi}{\partial \zeta^2} + C_1 \frac{\partial \pi}{\partial \varphi} + C_2 \frac{\partial \pi}{\partial \zeta} + C_3 \pi = C_4$$
(5.80)

gdje su koeficijenti C_1 , C_2 , C_3 i C_4 definirani kao:

$$C_{1} = C_{2} = 0, C_{3} = -\frac{3}{4} \left[\frac{1}{H^{2}} \left(\frac{\partial H}{\partial \varphi} \right)^{2} + \frac{2}{H} \frac{\partial^{2} H}{\partial \varphi^{2}} \right]$$

$$C_{4} = \frac{6}{H^{3/2} \omega} \left[\frac{\partial \overline{H}}{\partial \varphi} \omega - 2\dot{\varepsilon} \cos(\varphi - \gamma) + (\omega - 2\dot{\gamma})\varepsilon \sin(\varphi - \gamma) \right]$$
(5.81)

U skladu s sl.5.9. moguće je izračunati tlak π_q u svakoj točki izravnate mreže $\varphi - \zeta$. Indeksi i=1....m i j=1....n označavaju poziciju točke u mreži s obzirom na smjerove φ i ζ . Korištenjem centralnih diferencija i jednadžbi (5.80) i (5.81) dobiva se sljedeći izraz za Gauss-Seidelovu metodu:

$$\pi_{i,j} = A_{i,j} + B_{i,j}\pi_{j+1,j} + B_{i,j}\pi_{i-1,j} + C_{i,j}\pi_{i,j+1} + C_{i,j}\pi_{i,j+1}$$
(5.82)
gdie ie:

SI. 5.9. onačndKdiferencijska mreža

$$A_{i,j} = -\frac{\frac{6}{H^{3/2}\omega} \left[\frac{\partial \overline{H}}{\partial \varphi} \omega - 2\dot{\varepsilon} \cos(\varphi - \gamma) + (\omega - 2\dot{\gamma})\varepsilon\sin(\varphi - \gamma) \right]}{\frac{3}{4} \left[\frac{1}{H^2} \left(\frac{\partial H}{\partial \varphi} \right)^2 + \frac{2}{H} \frac{\partial^2 H}{\partial \varphi^2} \right] + \frac{2}{(\Delta \varphi)^2} + \frac{2}{(\Delta \zeta')^2}}$$

$$B_{i,j} = \frac{1}{(\Delta \varphi)^2 \left\{ \frac{3}{4} \left[\frac{1}{H^2} \left(\frac{\partial H}{\partial \varphi} \right)^2 + \frac{2}{H} \frac{\partial^2 H}{\partial \varphi^2} \right] + \frac{2}{(\Delta \varphi)^2} + \frac{2}{(\Delta \zeta')^2} \right\}}$$

$$C_{i,j} = \frac{1}{(\Delta \zeta')^2 \left\{ \frac{3}{4} \left[\frac{1}{H^2} \left(\frac{\partial H}{\partial \varphi} \right)^2 + \frac{2}{H} \frac{\partial^2 H}{\partial \varphi^2} \right] + \frac{2}{(\Delta \varphi)^2} + \frac{2}{(\Delta \zeta')^2} \right\}}$$

Pri rješavanju Reynoldsove jednadžbe koriste se Reynoldsovi rubni uvjeti koji se mogu prikazati sljedećim izrazom:

$$\pi = 0, \frac{\delta \pi}{\delta \varphi} = 0 \quad \text{kod} \quad \varphi = \varphi^*$$
(5.84)

uz $\zeta^* = B/R$ bezdimenzijsku širinu ležaja, gdje je B širina ležaja a R radijus osovine.

84

(5.83)

SI. 5.10. Reynoldsov rubni uvjet

SI. 5.11. Raspodjela tlaka u limunskom ležaju

jednadžbe:

$$\begin{aligned} \frac{\partial}{\partial\overline{\varphi}} \left(H_{a}^{3} \frac{\partial}{\partial\overline{\varphi}} \left(\frac{\partial P}{\partial x'} \right) \right) + \frac{\partial}{\partial \zeta} \left(H_{a}^{3} \frac{\partial}{\partial \zeta} \left(\frac{\partial P}{\partial x'} \right) \right) &= -12 \cos\overline{\varphi} \\ \frac{\partial}{\partial\overline{\varphi}} \left(H_{a}^{3} \frac{\partial}{\partial\overline{\varphi}} \left(\frac{\partial P}{\partial y'} \right) \right) + \frac{\partial}{\partial \zeta} \left(H_{a}^{3} \frac{\partial}{\partial \zeta} \left(\frac{\partial P}{\partial y'} \right) \right) &= -12 \sin\overline{\varphi} \\ \frac{\partial}{\partial\overline{\varphi}} \left(H_{a}^{3} \frac{\partial}{\partial\overline{\varphi}} \left(\frac{\partial P}{\partial x} \right) \right) + \frac{\partial}{\partial \zeta} \left(H_{a}^{3} \frac{\partial}{\partial \zeta} \left(\frac{\partial P}{\partial x} \right) \right) &= 6 \left[\sin\overline{\varphi} + 3 \frac{\partial H_{a'}}{\partial\overline{\varphi}} \frac{\cos\overline{\varphi}}{H_{a}} - \right] \\ &- \frac{1}{2} \frac{\partial P_{a}}{\partial\overline{\varphi}} H_{a} \left(\frac{\partial H_{a}}{\partial\overline{\varphi}} \cos\overline{\varphi} - H_{a'} \sin\overline{\varphi} \right) \right] \end{aligned}$$
(5.85)
$$\frac{\partial}{\partial\overline{\varphi}} \left(H_{a}^{3} \frac{\partial}{\partial\overline{\varphi}} \left(\frac{\partial P}{\partial y} \right) \right) + \frac{\partial}{\partial \zeta} \left(H_{a'}^{3} \frac{\partial}{\partial \zeta} \left(\frac{\partial P}{\partial y} \right) \right) &= 6 \left[-\cos\overline{\varphi} + 3 \frac{\partial H_{a'}}{\partial\overline{\varphi}} \frac{\sin\overline{\varphi}}{H_{a'}} - \right] \\ &- \frac{1}{2} \frac{\partial P_{a}}{\partial\overline{\varphi}} H_{a'} \left(\frac{\partial H_{a'}}{\partial\overline{\varphi}} \sin\overline{\varphi} - H_{a'} \cos\overline{\varphi} \right) \right] \end{aligned}$$

iz kojih se dobivaju bezdimenzijski koeficijenti krutosti i prigušenja uljnog filma kako slijedi:

Tlak uljnog filma, određen korištenjem Reynoldsovih rubnih uvjeta, je pozitivan u području $\varphi_p < \varphi < \varphi^*$ i jednak nuli u području $\varphi^* < \varphi < \varphi_k$, pri čemu φ_p i φ_k predstavljaju

početni i krajnji kut pojedinog segmenta. Kut φ^* nije unaprijed propisana vrijednost, već se određuje tijekom proračuna polja tlakova , sl. 5.10. [86].

Numeričke metode za rješavanja Reynoldsove jednadžbe neprestano se usavršavaju kako bi se omogućilo što brže i što točnije rješavanje polja tlakova u cilindričnim ležajevima [87], [88].

Raspodjela tlaka u jednom limunskom ležaju prikazana je na slici 5.11.

Bezdimenzijske krutosti i prigušenja određuju se prema [89]. Ova se procedura temelji na razmatranju rotorovog gibanja oko položaja njegove statičke ravnoteže. To se gibanje može pobuditi malim poremećajnim opterećenjem, koje je uvijek prisutno u rotoru. Na taj način, Reynoldsove jednadžbe će se pretvoriti u četiri poremećajne

$$\gamma_{11}^{r} = \frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial x} \right)_{st} d\zeta \cos\overline{\varphi} \, d\overline{\varphi} , \gamma_{12}^{r} = -\frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial y} \right)_{st} d\zeta \cos\overline{\varphi} \, d\overline{\varphi}$$

$$\gamma_{21}^{r} = -\frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial x} \right)_{st} d\zeta \sin\overline{\varphi} \, d\overline{\varphi} , \gamma_{22}^{r} = \frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial y} \right)_{st} d\zeta \sin\overline{\varphi} \, d\overline{\varphi}$$

$$\beta_{11}^{r} = \frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial x'} \right)_{st} d\zeta \cos\overline{\varphi} \, d\overline{\varphi} , \beta_{12}^{r} = -\frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial y'} \right)_{st} d\zeta \cos\overline{\varphi} \, d\overline{\varphi}$$

$$\beta_{21}^{r} = -\frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial x'} \right)_{st} d\zeta \sin\overline{\varphi} \, d\overline{\varphi} , \beta_{22}^{r} = \frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial y'} \right)_{st} d\zeta \sin\overline{\varphi} \, d\overline{\varphi}$$

$$\beta_{21}^{r} = -\frac{1}{4\beta} \int_{P_{1,d>0} \to 0^{-\beta}} \int_{-\beta}^{*\beta} \left(\frac{\partial P^{r}(\overline{\varphi},\zeta)}{\partial y'} \right)_{st} d\zeta \sin\overline{\varphi} \, d\overline{\varphi}$$

Konačno, sumiranjem koeficijenata svih segmenata, dobivaju se ukupni bezdimenzijski koeficijenti krutosti γ_{ik} i β_{ik} i prigušenja za višesegmentni ležaj:

$$\gamma_{ik} = \sum_{r=1}^{ns} \gamma_{ik}^{r} , \beta_{ik} = \sum_{r=1}^{ns} \beta_{ik}^{r}$$
(5.87)

Poseban problem, bilo da se radi o određivanju bezdimenzijske debljine uljnog filma preko izraza (5.76) ili (5.78), predstavlja određivanje kuta $\gamma = f(\varepsilon)$ pomoću kojeg je definiran položaj statičke ravnoteže ležaja. To se čini uz pomoć iteracijske procedure u kojoj se računa Somerfeldov broj $So=f(\varepsilon, 270^\circ)$, uz pomoć pretpostavke da bezdimenzijski tlak u tom položaju ima komponente $P_{xxt}=0$ i $P_{vst}=P=So$. Bezdimenzijski koeficijenti krutosti γ_{ik} i β_{ik} prikazani su na sl. 5.12 i 5.13. Njih je relativno jednostavnim postupkom pretvoriti u koeficijente krutosti k_{ii} i prigušenja c_{ii} . Jednadžbe gibanja kliznog ležaja su jednake jednadžbama gibanja kotrljajućeg ležaja i dane su izrazima (5.73) i (5.74). Jedina razlika između matrica krutosti i prigušenja kliznog i kotrljajućeg ležaja sastoji se u tome da se za njihovo određivanje kod kotrljajućeg ležaja upotrebljava parcijalna diferencijacija analitičkog izraza za vektor opterećenja $\{F_{\kappa}\}$ dok se kod kliznog ležaja numerički određuje polje tlaka i njegovih parcijalnih

derivacija po poopćenim koordinatama a zatim se vrši njihovo pretvaranje u algebarske izraze postupkom tzv. curve fittinga. Konačno, tako dobiveni analitički izrazi se kod kliznog ležaja integriraju po cjelokupnoj domeni segmenta i zbrajaju po svim segmentima kako bi se dobili bezdimenzijski koeficijenti (5.87).

5.3.4.3. Brtva kao konačni element

Model kojime je moguće simulirati brtvu kao konačni element po matematičkom je izražaju vrlo sličan modelu konačnih elemenata kliznih i kotrljajućih ležajeva. Specifičnost pak ovog modela je uvođenje matrice masa i preko nje inercijskih sila u matematički model.

Sl. 5.14 prikazuje model brtve kao konačnog elementa. Pod pretpostavkom da je kućište pomično prihvatljivo je opisivanje dinamičkog ponašanja kratke brtve pomoću četiri poopćene koordinate (dva puta po dva translacijska pomaka) $\{q^e\} = \{u_1 \ v_1 \ u_2 \ v_2\}^T$ te su diferencijalne jednadžbe gibanja konačnog elementa brtve jednake:

SI.5.14. Model brtve kao konačnog elementa

 $[m^{e}]\!\!\{\ddot{q}^{e}\}\!+\![c^{e}]\!\!\{\dot{q}^{e}\}\!+\![k^{e}]\!\!\{q^{e}\}\!=\!\{f^{e}\}$ (5.88)

pri čemu su matrice masa, prigušenja, krutosti i vanjske sile, brtve kao konačnog elementa jednake:

$$\begin{bmatrix} m^{\nu} \\ -m_{\gamma\chi} & m_{\chi\gamma} & 0 & 0 \\ -m_{\gamma\chi} & m_{\gamma\gamma} & 0 & 0 \\ 0 & 0 & m_{\chi\chi} & m_{\chi\gamma} \\ 0 & 0 & -m_{\gamma\chi} & m_{\gamma\gamma} \end{bmatrix} \begin{bmatrix} c^{\nu} \\ -c^{\nu} \\ c^{\nu} \\ c^{\nu} \\ -c^{\nu} \\ c^{\nu} \\ -c^{\nu} \\ c^{\nu} \\ c^{\nu$$

Elementi matrica masa, prigušenja i krutosti računaju se na temelju složenih empirijskih izraza, koji uzimaju o obzir zadanu geometriju brtve i specifične uvjete rada, te su uobičajeno dani u literaturi npr. [90]. Njihova veza s elementima vektora opterećenja brtve $\{F_b\} = \{F_{v1}, F_{v1}, F_{v2}, F_{v2}\}$ je također vrlo složena i često se određuje eksperimentalno npr. mjerenjima kompleksnih transfer funkcija npr. mobilnosti, [91]. Procedura proračuna vibracija rotora centrifugalne pumpe, uzimajući u obzir nelinearne sile fluida kao i sile brtvi opisana je u [92].

Ukoliko se radi o modelu brtvi koje djeluju u sustavu s nepomičnim statorom, tada se jednadžbe (5.88) i matrice (5.89) reduciraju budući otpadaju pomaci u_2 i v_2 iz vektora poopćenih koordinata.

Za duže brtve, novije su analize pokazale da se zbog precesijskog gibanja rotora, moraju uzeti u obzir još dva dodatna stupnja slobode gibanja što se odnosi na rotacije oko osi x i y [93]. Jednadžba (5.88), pisana zbog jednostavnosti za sustav s nepomičnim statorom sada poprima oblik:

$$\begin{bmatrix} m_{xx} & m_{yy} & m_{zx} & -m_{zx} \\ m_{yx} & m_{yy} & m_{zx} & -m_{zx} \\ m_{ax} & m_{ax} & M_{ax} & -m_{a} \\ m_{ax} & m_{ax} & M_{ax} & -m_{a} \\ m_{ax} & m_{ax} & m_{a} & M_{a} \end{bmatrix} \begin{bmatrix} \ddot{u} \\ \ddot{v} \\ \ddot{c} \\ \ddot{\beta} \end{bmatrix} + \begin{bmatrix} c_{xx} & c_{xy} & c_{zx} & -c_{zx} \\ -c_{yx} & c_{xx} & -c_{zx} & -c_{zx} \\ c_{ax} & c_{ax} & c_{a} & c_{a} \\ c_{ax} & -c_{ax} & c_{a} & c_{a} \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{\beta} \end{bmatrix} + \\ + \begin{bmatrix} k_{xx} & k_{yy} & k_{zx} & -k_{zx} \\ -k_{yx} & k_{yy} & -k_{zx} & -k_{zx} \\ k_{ax} & k_{ax} & k_{a} & k_{a} \\ k_{ax} & -k_{zx} & k_{a} & k_{a} \end{bmatrix} \begin{bmatrix} u \\ v \\ \beta \end{bmatrix} = \begin{bmatrix} f_{x} \\ f_{y} \\ M_{x} \\ M_{y} \end{bmatrix}$$
(5.90)

Iz jednadžbe (5.90) je vidljivo da se koeficijenti inercijske sile s jednim grčkim indeksom odnose na koeficijente inercijskog momenta, dok se koeficijenti inercijske sile s dvostrukim grčkim indeksom odnose na svezane koeficijente. Isto se odnosi i na koeficijente prigušenja i krutosti brtve.

5.3.4.4. Ležaj s suhim trenjem kao konačni element

U ovoj disertaciji bit će prezentirana dva modela prihvatnog ležaja kao konačnog elementa od kojih će oba biti pripremljena za asembliranje u ukupne dinamičke jednadžbe gibanja sustava. Ta se dva modela razlikuju po načinu vezivanja statorskog dijela ležaja na okolinu te će prvi model biti preko opruga i prigušivača vezan na nepomičnu podlogu dok će kod drugog modela postojati mogućnost vezivanja statorskog dijela na substrukturu kućišta koja može dalje biti modelirana grednim rotordinamičkim konačnim elementima opisanim u poglavljima 5.3.1. i 5.3.2. Dinamika ležaja s suhim trenjem prvog modela, sl. 5.15 prikazana je u poglavlju 3.4.1. gdje su

Sl. 5.15. Model ležaja s suhim trenjem

izvedene disipacijska funkcija za viskozni prigušivač, potencijalna energija te kinetička energija statorskog dijela ovog tipa ležaja s suhim trenjem. Ako se tome doda još i teorija krutog diska kao konačnog elementa (poglavlje 5.3.3.) te imajući u vidu princip akcije i reakcije, upotrebom Hamiltonovog principa dobivaju se diferencijalne jednadžbe gibanja takvog sustava koje glase:

$$[m^{e}]\!\!\{\ddot{q}^{e}\}\!+\!(\![c^{e}]\!]\!-\!\mathcal{Q}\![m^{e}_{G}]\!\}\!\!\{\dot{q}^{e}\}\!+\![k^{e}]\!\!\{q^{e}\}\!=\!\{f^{e}_{i}\}\!+\!\{f^{e}_{n}\}$$
(5.91)

pri čemu konačni element ležaja s suhim trenjem u ovom slučaju ima šest stupnjeva slobode gibanja $\{q^e\} = \{u_1 \ v_1 \ \alpha_1 \ \beta_1 \ u_2 \ v_2\}^T$. Vektor $\{f_i^e\}$ odnosi se na linearne vanjske sile uslijed debalansa i težinu (izraz (5.62) dimenzija (4x1) potrebno je proširiti s dvije nule budući na statorskom dijelu ležaja nema porazdijeljenog debalansa) a vektor $\{f_i^e\}$ na nelinearne vanjske sile te iznosi

 $\left\{f_{n}^{\varepsilon}\right\} = \left\{-N\cos\gamma + T\sin\gamma - N\sin\gamma + T\cos\gamma \quad 0.0 \quad N\cos\gamma - T\sin\gamma \quad N\sin\gamma + T\cos\gamma\right\}^{T} (5.92)$

Preostale matrice u izrazu (5.91) su dijagonalne (navedeni su samo elementi glavne dijagonale):

$$\left[m^{e}\right] = \left\{m_{1} \ m_{1} \ J_{a1} \ J_{a1} \ m_{2} \ m_{2} \ m_{2} \right\}^{T}; \quad \left[c^{e}\right] = \left\{0 \ 0 \ 0 \ 0 \ c_{2s} \ c_{2y}\right\}^{T}; \quad \left[k^{e}\right] = \left\{0 \ 0 \ 0 \ 0 \ k_{2s} \ k_{2y}\right\}^{T}.$$
(5.93)

osim giroskopske matrice koja iznosi:

(5.94)

Ukoliko ležaj s suhim trenjem sa sl. 5.15 ne bi preko elastičnih i disipativnih elemenata bio vezan na fiksnu podlogu već bi imao mogućnost vezivanja na substrukturu kućišta tada bi konačno elementni prikaz takvog ležaja s suhim trenjem bio povezan s osam poopćenih koordinata tj. s vektorom $\{q^{e}\} = \{u_{1}, v_{1}, \alpha_{1}, \beta_{1}, u_{2}, v_{2}, \alpha_{2}, \beta_{2}\}$ a jednadžbe gibanja bi mu se mogle prikazati kao:

$$[m^{e}]\{\ddot{q}^{e}\} - \Omega[m^{e}_{G}]\{\dot{q}^{e}\} = \{f^{e}_{i}\} + \{f^{e}_{u}\}$$
(5.95)

Vektor nelinearnih vanjskih sila bi tada iznosio:

$$\left\{f_n^e\right\} = \left\{-N\cos\gamma + T\sin\gamma - N\sin\gamma + T\cos\gamma 00N\cos\gamma - T\sin\gamma - N\sin\gamma + T\cos\gamma 00\right\}^T$$
(5.96)

dok je vektor $\{f_i^e\}$ identičan onom definiranom izrazom (5.62) ali proširen s četiri nule na posljednja četiri mjesta. Matrice masa, za ovaj drugi tip ležaja s suhim trenjem, je ponovno dijagonalna s glavnom dijagonalom $[m^e] = \{m_1 \ m_1 \ J_{a1} \ J_{a1} \ m_2 \ m_2 \ J_{a2} \ J_{a2} \}$ dok pripadna matrica giroskopskog efekta glasi:

	0	0	0	0	0	0	0	0	(5.9
	0	0	0	0	0	0	0	0	
	0	0	0	J_{p1}	0	0	0	0	
L.e.I.	0	0	$-J_{p1}$	0	0	0	0	0	
$[m_G] =$	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

5.3.5. Asembliranje jednadžbi gibanja konačnih elemenata u globalne jednadžbe gibanja sustava

U poglavljima 5.3.1...5.3.4 dobivene su jednadžbe gibanja konačnih elemenata pomoću kojih se može modelirati rotordinamički sustav. Dobivene jednadžbe kao i pripadne matrice (masa, prigušenja...) te pripadni vektori (raspodijeljenog debalansa, nelinearne sile kontakta...) odnose se isključivo na konačne elemente i potrebno ih je asemblirati u jednadžbe sustava cijelog rotordinamičkog sustava. Pri tome je matrice i vektore grednih rotordinamičkih konačnih elemenata potrebno transformirati iz

lokalnog u globalni koordinatni sustav budući su pisane u lokalnom koordinatnom sustavu, a gredni konačni element može u prostoru zauzimati proizvoljan položaj. Zatim se te matrice i vektori parcijaliziraju te se umeću na pripadna mjesta u globalne matrice (vektore), a vezano uz pripadne stupnjeve slobode gibanja. Matrice i vektore diskova kao konačnih elemenata kao i ležajeva nije potrebno niti transformirati niti parcijalizirati već samo umetnuti na pripadna mjesta u globalnim matricama cijelog rotordinamičkog sustava.

Pojedini autori [94] predlažu prethodno asembliranje konačnih elemenata u manje, zasebne cjeline koje nazivaju substrukturama. Osnovne prednosti formiranja substruktura su mogućnost odvojene dinamičke analize pojedinih dijelova rotordinamičkog sustava (pogotovo onih koji se vezuju na fiksne rubove npr. kućište), mogućnost odvojenog modeliranja složenih sustava od specijalista za pojedine substrukture te mogućnost redukcije sustava jednadžbi gibanja (poglavlje 5.4) već na nivou substruktura.

Postupak rada s substrukturama i formiranja globalnih jednadžbi gibanja rotordinamičkog sustava bit će objašnjen na sustavu rotor – ležaj – kućište ležaja prikazanom na sl.5.16. Rotor će biti podijeljen na tri substrukture i to:

- substruktura 0: ležaj
- substruktura I: rotor
- substruktura II: kućište ležaja

Substruktura I može biti modelirana s 4 ravninska (zbog jednostavnosti) gredna konačna rotordinamička elementa (ili Bernoulli-Eulerove ili Timoshenkove grede) te krutim diskom pri čemu po svakom čvoru postoje po dva konačna elementa te je vektor poopćenih koordinata prve substrukture jednak: $\{q^{T}\}=\{v_{1} \alpha_{1} v_{2} \alpha_{2} v_{3} \alpha_{3} v_{4} \alpha_{4} v_{5} \alpha_{5}\}^{T}$. Diferencijalne jednadžbe gibanja substrukture I, u općenitom obliku glase:

$$[m']\!\!\{\!\dot{q}'\}\!+\![c']\!\!\{\!\dot{q}'\}\!+\![k']\!\!\{\!q'\}\!\!=\!\!\{\!f'\}\!\!$$
(5.98)

Substruktura II također može biti modelirana s 4 ravninska gredna konačna rotordinamička elementa (ili Bernoulli-Eulerove ili Timoshenkove grede) pri čemu je vektor poopćenih pomaka ove substrukture jednak $\{q^{\prime\prime}\}=\{v_6 \alpha_6 v_7 \alpha_7 v_8 \alpha_8 v_9 \alpha_9 v_{10} \alpha_{10}\}^T$. Pri tome su pomaci nekih čvorova ograničeni te je pripadne redke i stupce potrebno eliminirati iz jednadžbi gibanja, a također je potrebno obratiti pažnju i na transformaciju jednadžbi gibanja konačnih elemenata 6-9 i 8-10 iz lokalnog u globalni koordinatni sustav. Slično kao i kod substrukture I glasit će i ovdje diferencijalne jednadžbe gibanja:

$$[m'']\{\ddot{q}''\} + [c'']\{\dot{q}''\} + [k'']\{q''\} = \{f''\}$$
(5.99)

Substruktura 0 je specifična substruktura koja služi za povezivanje dvaju substruktura (I i II) i njezin vektor generaliziranih koordinata ne posjeduje originalne poopćene koordinate već ih dijeli s substrukturama I i II. Vektor poopćenih koordinata za ovu substrukturu je $\{q^o\} = \{v_1 \ v_5 \ v_6 \ v_8\}^7$ a diferencijalne jednadžbe gibanja glase:

$$\begin{bmatrix} c_{1} & 0 & -c_{1} & 0 \\ 0 & c_{2} & 0 & -c_{2} \\ -c_{1} & 0 & c_{1} & 0 \\ 0 & -c_{2} & 0 & c_{2} \end{bmatrix} \begin{bmatrix} \dot{v}_{1} \\ \dot{v}_{5} \\ \dot{v}_{8} \end{bmatrix} + \begin{bmatrix} k_{1} & 0 & -k_{1} & 0 \\ 0 & k_{2} & 0 & -k_{2} \\ -k_{1} & 0 & k_{1} & 0 \\ 0 & -k_{2} & 0 & k_{2} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{5} \\ v_{6} \\ v_{8} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(5.100)

R Žigulić-Doktorska disertacija

Dinamika rotora u kliznim ležajevima

Matrice krutosti i prigušenja substrukture koja se sastoji iz dva konačna elementa kliznog (kotrljajućeg ležaja) uzete su prema jednadžbi (5.73) zanemarujući svezane krutosti jer je promatran ravninski vibracijski problem.

Iz na ovaj način definiranih substruktura moguće je na relativno jednostavan način dobiti diferencijalne jednadžbe gibanja cijelog sustava rotor-ležaj-kućište kao:

 $\begin{bmatrix} m' \\ [0] \\ [m''] \end{bmatrix} \begin{bmatrix} \dot{q}' \\ \dot{q}'' \end{bmatrix} + \begin{bmatrix} c' \\ [0]^* \\ [0]^* \\ [c'']^* \end{bmatrix} \begin{bmatrix} \dot{q}' \\ \dot{q}'' \end{bmatrix} + \begin{bmatrix} k' \\ [0]^* \\ [0]^* \\ [k'']^* \end{bmatrix} \begin{bmatrix} \dot{q}' \\ \dot{q}'' \end{bmatrix} = \begin{bmatrix} f' \\ \dot{q}'' \\ f'' \end{bmatrix}$ (5.101)

pri čemu je u svaku submatricu označanu s zvjezdicom potrebno još dodati, na pripadna mjesta, i članove povezane s substrukturom 0.

SI. 5.16 Rotordinamički model rotor-ležaj-kućište

5.4. Fizikalno-modalni model

Kompliciranije rotordinamičke strukture iziskuju, pri točnom određivanju njihovog vibracijskog ponašanja, uvođenje većeg broja stupnjeva slobode gibanja. Broj vlastitih frekvencija i formi vibriranja povećava se, kako se diskretizirani model približava kontinuiranom oscilatoru tj. realnoj strukturi. Istovremeno se poboljšava numerička točnost vlastitih frekvencija i formi vibriranja. Nedostatak modeliranja rotordinamičkog sustava s velikim brojem stupnjeva slobode gibanja ogleda se s druge strane u bitnom povećanju memorijskog prostora za skladištenje podataka kao i vremena potrebnog za provođenje proračuna. Stoga se kod velikih sustava može nastojati da se broj stupnjeva slobode reducira.

Redukcijom se sustav diferencijalnih jednadžbi drugog reda rotordinamičkog sustava čije se gibanje može definirati s N stupnjeva slobode:

$${}_{N}[m]^{N}\{\ddot{q}\} + {}_{N}[c]^{N}\{\dot{q}\} + {}_{N}[k]^{N}\{q\} = \{f\}$$
(5.102)

može kroz transformacijsku matricu [T] transformirati u sustav koji sadrži L reduciranih stupnjeva slobode:

$$q\} =_{N} [T]^{L} \{q_{R}\}$$
(5.103)

pri čemu indeks R označava redukciju, te reducirani sustav LxL diferencijalnih jednadžbi gibanja poprima oblik:

$$\left([T]^{T} [m] [T] \right) \left(\dot{q}_{R} \right) + \left([T]^{T} [c] [T] \right) \left(\dot{q}_{R} \right) + \left([T]^{T} [k] [T] \right) \left(q_{R} \right) = [T]^{T} \left\{ f \right\}$$

$$(5.104)$$

ili općenito [95], [96]:

$$\left[m^{red} \left\{ \dot{q}_{R} \right\} + \left[c^{red} \right] \left\{ \dot{q}_{R} \right\} + \left[k^{red} \right] \left\{ q_{R} \right\} = \left\{ f^{red} \right\}$$
(5.105)

Različiti se pristupi redukciji razlikuju samo u sadržaju transformacijske matrice [T] a u rotordinamici se u principu koriste: -statička (dinamička) kondenzacija

-modalna kondenzacija
 -mješovita kondenzacija.

5.4.1. Statička kondenzacija

Vektor poopćenih koordinata rotordinamičkog sustava se sortira tako da se podijeli na glavne (indeks G) i sporedne (indeks S) stupnjeve slobode gibanja:

$$\{q\} = \begin{cases} \{q_G\} \\ \{q_S\} \end{cases}$$
(5.106)

pri čemu je cilj kondenzacije da sporedni stupnjevi slobode kondenzacijom nestanu a da glavni pri tome ostanu sačuvani $\{q_R\} = \{q_G\}$. Pri odabiru glavnih i sporednih stupnjeva slobode uobičajeno je rukovoditi se činjenicom da su sporedni stupnjevi slobode oni stupnjevi slobode koji unose nikakvu ili neznatnu kinetičku energiju u ukupnu kinetičku energiju rotordinamičkog sustava. Stoga je uobičajeno, kod fleksijskih problema rotordinamičkih sustava, da se već u startu kondenziraju torzijski i aksijalni stupnjevi slobode gibanja na način da se njihova kinetička energija zanemaruje te se niti ne uzimaju za čvorne stupnjeve slobode gibanja, dok se u samom proračunu može statički kondenzirati i rotacijske stupnjeve slobode (vezano uz čvorne kutne pomake α i β) dok se translacijske stupnjeve slobode (pomaci u i v) uobičajeno ne kondenzira ili se kondenziraju oni koji imaju manji utjecaj na kinetičku energiju (čvorovi bliži ležajevima). Ako se sustav (5.102) sada prikaže kao:

 $\begin{bmatrix} m_{GG} & m_{GS} \\ m_{SG} & m_{SS} \end{bmatrix} \left\{ \begin{cases} \ddot{q}_{G} \\ \ddot{q}_{S} \end{cases} \right\} + \begin{bmatrix} c_{GG} & c_{GS} \\ c_{SG} & c_{SS} \end{bmatrix} \left\{ \dot{q}_{G} \right\} + \begin{bmatrix} k_{GG} & k_{GS} \\ k_{SG} & k_{SS} \end{bmatrix} \left\{ \begin{cases} q_{G} \\ q_{S} \end{cases} \right\} = \left\{ \begin{cases} f_{G} \\ f_{S} \end{cases} \right\}$ (5.107)

tada je moguće postupkom statičke kondenzacije povezati vektor poopćenih koordinata i vektor glavnih stupnjeva slobode gibanja kao:

$$\{q\} = \left\{ \begin{cases} q_G \\ \{q_s\} \end{cases} = \begin{bmatrix} [I] \\ -[k_{ss}]^{-1}[k_{sG}] \end{bmatrix} \{ q_G \} = [T] \{ q_R \}$$
(5.108)

na temelju čega je moguće dobiti sustav reduciranih jednadžbi oblika (5.104) ili (5.105).

5.4.1.1. Dinamička kondenzacija

Slično statičkoj kondenzaciji, u dinamičkim sustavima ima smisla provoditi i dinamičku kondenzaciju te dinamičke jednadžbe gibanja rotordinamičkog sustava, npr. u slučaju stacionarnih vibracija glase:

$$\begin{pmatrix} -\Omega^2 \begin{bmatrix} m_{GG} & m_{GS} \\ m_{SG} & m_{SS} \end{bmatrix} + \begin{bmatrix} k_{GG} & k_{GS} \\ k_{SG} & k_{SS} \end{bmatrix} + j\Omega \begin{bmatrix} c_{GG} & c_{GS} \\ c_{SG} & c_{SS} \end{bmatrix} \left\{ \begin{cases} q_G \\ q_S \end{cases} \right\} = \begin{cases} \{f_G \} \\ \{f_S \} = \{0\} \end{cases}$$
(5.109)

iz čega se, slično izrazu (5.102), dobiva obrazac za vezu između vektora $\{q\}$ i $\{q_n\}$

$$\{q\} = \begin{cases} \{q_G\} \\ \{q_S\} \end{cases} = \begin{bmatrix} I \\ -([k_{SS}] - \Omega^2[m_{SS}] + j\Omega[c_{SS}])^{-1}([k_{SG}] - \Omega^2[m_{SG}] + j\Omega[c_{SG}]) \end{bmatrix} \{q_G\} = [T]\{q_R\}$$
(5.110)

te se matrica transformacijska matrica sustava [T] upotrebljava za dobivanje sustava diferencijalnih jednadžbi oblika (5.104) i (5.105)

5.4.2. Modalna kondenzacija

Cilj ovakvog tipa kondenzacije je eliminacija viših oblika vibriranja iz konačnog numeričkog rješenja, budući više forme vibriranja jako malo utječu na rezultat jer ih je gotovo nemoguće pobuditi. Prema tome potrebno je, korištenjem transformacijske matrice [T] doći do L nižih oblika vibriranja statičkog konzervativnog pomoćnog sustava:

$$[m]{\ddot{q}} + [k]{q} = \{0\}$$
(5.111)

a *N-L* viših oblika odbaciti. Pri tome se u pravilu upotrebljava kriterij po kojemu maksimalna vlastita frekvencija koja se uzima u obzir ω^* mora biti minimalno dvostruko viša od najviše komponente kružne frekvencije uzbude Ω_{max} tj. vrijedi:

$$v' \ge 2\Omega_{\max} \tag{5.112}$$

Ovih L vlastitih vektora je potrebno sortirati u L stupaca reducirane modalne matrice $[\phi^*]$

$$\{q\} = \sqrt{[\phi^*]^L} \{q_G\} = [T] \{q_R\}$$
(5.113)

Uz dobivanje reduciranog sustava diferencijalnih jednadžbi gibanja (5.104) i (5.105).

5.4.3. Mješovita kondenzacija

Mješovita kondenzacija sastoji se iz statičke (dinamičke) i modalne kondenzacije pri čemu se vektor reduciranih poopćenih koordinata sastoji iz vektora glavnih stupnjeva slobode i reduciranog broja sporednih stupnjeva slobode gibanja $\{q_{Sred}\}$ tj. $\{q_R\} = \{\{q_G\}, \{q_{Sred}\}\}^T$ gdje matrica transformacije [T] mora zadovoljiti sljedeći uvjet:

$$\{q\} = \begin{cases} \{q_G\} \\ \{q_S\} \end{cases} = \begin{bmatrix} [I] & [0] \\ - [K_{SS}]^{-1} [K_{SG}] & [\phi^*] \end{bmatrix} \begin{cases} \{q_G\} \\ \{q_{Sred}\} \end{cases} = [T] \{q_R\}$$

$$(5.114)$$

6. Numeričke procedure za rješavanje rotordinamičkih problema

Numeričke procedure za rješavanje rotordinamičkih problema odnose se na rješavanje linearnih rotordinamičkih problema, što obuhvaća određivanje vlastitih frekvencija i oblika vibriranja, odziva zbog uzbude debalansom i odziva zbog proizvoljne vremenske uzbude te na rješavanje nelinearnih rotordinamičkih problema oblika:

$$[m]\{\ddot{q}\} + [h]\{\dot{q}\} + [k]\{q\} + \{f_n\} = \{f_i\}$$
(6.1)

Ovladavanje funkcioniranjem ovih procedura predstavlja jedan od temeljnih koraka izrade kompjuterske aplikacije.

6.1. Procedura za određivanje vlastitih vrijednosti i oblika vibriranja

Analiza vlastitih vrijednosti rotacijskog sustava podrazumijeva prema određivanje vlastitih frekvencija u ovisnosti o brzini vrtnje, prikaz Campbellovog dijagrama, te prikaz vlastitih oblika vibriranja. Izostavljanjem vanjskih i nelinearnih sila iz izraza (6.1) dobiva se homogena jednadžba gibanja rotordinamičkog sustava:

$$[m]\{\ddot{q}\} + [h]\{\dot{q}\} + [k]\{q\} = 0$$
(6.2)

Jednadžbom (6.2) je opisan problem vlastitih vrijednosti rotacijskog sustava. Ako se rješenje pretpostavi u obliku:

$$\{q\} = \{\hat{q}\} e^{\lambda t} \tag{6.3}$$

i uvrštavanjem u izraz (6.3) dobiva se

$$\lambda^{2}[m] + \lambda[h] + [k]) \{\hat{q}\} = 0$$
(6.4)

te proširivanjem izraza (6.4), prema literaturi [97], slijedi:

$$\begin{bmatrix} h \end{bmatrix} \begin{bmatrix} k \\ \hat{q} \end{bmatrix} \begin{cases} \lambda \{\hat{q}\} \\ \{\hat{q}\} \end{cases} = \lambda \begin{bmatrix} -\begin{bmatrix} m \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} \lambda \{\hat{q}\} \\ \{\hat{q}\} \end{bmatrix}$$
(6.5)

Matrična jednadžba (6.5) da se kraće napisati kao

$$[A]{X} = \lambda[B]{X} \tag{6.6}$$

pri čemu je:

$$A] = \begin{bmatrix} \begin{bmatrix} h \end{bmatrix} & \begin{bmatrix} k \end{bmatrix} \\ \begin{bmatrix} k \end{bmatrix} & \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} -\begin{bmatrix} m \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} \\ \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} k \end{bmatrix} & \{X\} = \begin{bmatrix} \lambda \{\hat{q}\} \\ \{\hat{q}\} \end{bmatrix}$$
(6.7)

Rješenja jednadžbe (6.6) mogu se dobiti uz uvjet

$$\left| \begin{bmatrix} A \end{bmatrix} - \lambda \begin{bmatrix} B \end{bmatrix} \right| = 0 \tag{6.8}$$

te se dobivaju rješenja u obliku konjugirano kompleksnih parova što za primjer dviju najnižih vlastitih vrijednosti glasi

$$\lambda_1 = -\frac{\alpha_1 \omega_1}{\sqrt{1 - \alpha_1^2}} \pm j \omega_1 \tag{6.9}$$

dok su njima pripadni vlastiti vektori oblika

$$\hat{q}_1 = R_1 \pm jI_1 \tag{6.10}$$

Vraćanjem rješenja (6.9) i (6.10) u pretpostavljeno rješenje (6.3) dobiva se kao konačno rješenje:

$$\{q\} = e^{\left(\frac{\omega_1\omega_1}{\sqrt{1-\omega_1}^2}\right)^t} \left[(R_1 + jI_1)(\cos\omega_1 t + j\sin\omega_1 t) + (R_1 - jI_1)(\cos\omega_1 t - j\sin\omega_1 t) \right]$$
(6.11)

a sređivanjem slijedi:

$$\{q\} = 2e^{\left(\frac{-\alpha_i\omega_i}{\sqrt{1-\alpha_i^2}}\right)^t} \left[R_1 \cos \omega_1 t - I_1 \sin \omega_1 t\right]$$
(6.12)

Izraz (6.12) ne sadrži niti jedan kompleksan broj. Eksponencijalni se izraz, kod ravnomjernih vibracija, tijekom vremena smanjuje ka nuli te izraz

$$\{q\} = 2[R_1 \cos \omega_1 t - I_1 \sin \omega_1 t]$$
(6.13)

predstavlja vlastiti oblik. Stoga su za čvor rotordinamičkog elementa općenito, komponente pomaka

$$u = u_c \cos \omega_i t + u_s \sin \omega_i t$$

$$v = v_c \cos \omega_i t + v_s \sin \omega_i t$$
(6.14)

a pripadne orbite su elipse. Postupak konstrukcije elipse bit će prikazan u poglavlju 6.2.

6.2. Procedura za određivanje stacionarnog odziva rotora na harmonijsku uzbudnu silu

Većina rotora se okreće u stacionarnom (ustaljenom) stanju, što znači da se pri proračunu može jednostavno zanemariti utjecaj mogućih tranzijentnih pojava. U ovom poglavlju bit će prikazan proračun odziva modela rotora u stacionarnom stanju na harmonijsku uzbudu.

Vektor linearnih sila u jednadžbi (6.1) može se napisati u obliku:

$$\{f_i\} = \{f_c\} \cos \Omega t + \{f_s\} \sin \Omega t. \tag{6.15}$$

te se uz zanemarivanje nelinearnih sila vektor odzivnog pomaka može pretpostaviti u obliku:

$$q_{s}^{2} = \{q_{s}\}\cos\Omega t + \{q_{s}\}\sin\Omega t.$$
(6.16)

Brzina i ubrzanje dobivaju se deriviranjem po vremenu:

$$\{\dot{q}\} = -\{q_{c}\}\Omega \sin \Omega t + \{q_{s}\}\Omega \cos \Omega t \ddot{q}\} = -\{q_{c}\}\Omega^{2} \cos \Omega t - \{q_{s}\}\Omega^{2} \sin \Omega t.$$

$$(6.17)$$

Jednadžbe gibanja (6.1) poprimaju korištenjem jednadžbi (6.15)...(6.17) slijedeći oblik:

$$\mathcal{D}^{2}(\lbrace q_{c} \rbrace \cos \Omega t + \lbrace q_{s} \rbrace \sin \Omega t) + \llbracket h \rrbracket \Omega(-\lbrace q_{c} \rbrace \sin \Omega t + \lbrace q_{s} \rbrace \cos \Omega t) + \\ + \llbracket k \rrbracket (\lbrace q_{c} \rbrace \cos \Omega t + \lbrace q_{s} \rbrace \sin \Omega t) = \lbrace f_{c} \rbrace \cos \Omega t + \lbrace f_{s} \rbrace \sin \Omega t$$
(6.18)

Izjednačenjem članova s istom trigonometrijskom funkcijom u jednadžbi (6.18) dobiva se:

$$-[m]\{q_{c}\}\Omega^{2} + [h]\{q_{s}\}\Omega + [k]\{q_{c}\} = \{f_{c}\}$$

$$-[m]\{q_{s}\}\Omega^{2} - [h]\{q_{c}\}\Omega + [k]\{q_{s}\} = \{f_{s}\}$$
(6.19)

R Žigulić-Doktorska disertacija

te se jednadžbe mogu udružiti u matričnu jednadžbu:

$$\begin{bmatrix} [k] - [m] \Omega^2 & [h] \Omega \\ - [h] \Omega & [k] - [m] \Omega^2 \end{bmatrix} \begin{cases} \{q_c\} \\ \{q_s\} \end{cases} = \begin{cases} \{f_c\} \\ \{f_s\} \end{cases}$$
(6.20)

pri čemu se dobiva sustav jednadžbi dva puta većeg reda od početnog tj $2 \times N$ (N je ukupan broj stupnjeva slobode sustava). Rješenja ovog sustava su, prema izrazu (6.16), vektori kosinusnih odnosno sinusnih komponenata pomaka $\{q_c\}$ i $\{q_s\}$. Svakom čvoru numeričkog modela pripadaju po četiri pomaka (dva translacijska i dva kutna) unutar oba vektora, no za prikazivanje orbite bit će potrebna samo prva dva tj. translacijski pomaci u_c , v_c , u_s i v_s . Na osnovi izraza (6.16) definiran je stacionarni odziv proizvoljne čvorne točke rotora na harmonijsku uzbudu u općem obliku:

$$u_{i} = u_{ci} \cos \Omega t + u_{si} \sin \Omega t$$

$$v_{i} = v_{ci} \cos \Omega t + v_{si} \sin \Omega t.$$
(6.21)

Slika 6.1. pokazuje da se proizvoljna čvorna točka rotora u stacionarnom stanju giba upravo po eliptičnoj putanji. Poluosi eliptične putanje mogu se izračunati prema slijedećim izrazima

$$a = \sqrt{A + (B^2 + C^2)^{1/2}},$$

$$b \stackrel{4}{=} \sqrt{A - (B^2 + C^2)^{1/2}}$$
(6.22)

pri čemu je:

$$A = \left(u_c^2 + v_c^2 + u_s^2 + v_s^2\right)/2, \quad B = \left(u_c^2 + v_c^2 - u_s^2 - v_s^2\right)/2, \quad C = u_c u_s + v_c v_s \tag{6.23}$$

Kut otklona elipse ψ definira se preko slijedećeg izraza:

$$an 2\psi = \frac{2(u_s v_s + u_c v_c)}{u_s^2 + u_c^2 - v_s^2 - v_c^2}$$
(6.24)

Poluos b može se isto tako izračunati prema izrazu:

$$b = \frac{u_c v_s + u_s v_c}{a} \tag{6.25}$$

Ako se za izračun poluosi *b* upotrijebi upravo izraz (6.25) tada predznak rješenja ima smisao definicije naprednog odnosno natražnog precesijskog gibanja.

6.3. Procedura za određivanje tranzijentnog odziva linearnog modela rotora

Za rješavanje dinamičkih jednadžbi gibanja strukture pod proizvoljnom uzbudom, uobičajeno se koriste dva pristupa i to transformacijski postupak i direktni vremensko – integracijske postupak.

Transformacijski postupak [98] može također rabiti jedan od sljedeća dva postupka i to prijelaz na sustav diferencijalnih jednadžbi prvog reda(Eulerova, Heunova ili Runge-Kuttova metoda) ili tehnike modalne superpozicije. Tehnike modalne superpozije(modalni ili bimodalni postupak), koje se temelje na rezultatima linearne modalne analize sastoje se od prikaza dinamičkog odziva razvojem u red vlastitih oblika. Metoda je ograničena na sustave kod kojih su temeljni (najniži) vlastiti oblici dominantni u odnosu na vlastite oblike koji pripadaju višim vlastitim frekvencijama te kao takvi osiguravaju dobru kvazistatičku i spektralnu konvergenciju te na probleme sustava koji se ponašaju kvazilinearno.

Nasuprot tome, direktne vremensko-integracijske metode imaju mogućnost relativno jednostavnog proširenja na nelinearne sustave. Temeljene su na konačno vremenskim razlikama, pri čemu je osim odabira pojedinih parametara karakterističnih za korištenu metodu, odabir vremenskog koraka kritičan potez s kojim se susreće prilikom korištenja metode. Direktne višekoračne integracijske metode mogu biti matematički predstavljene izrazom:

$$\{u_{n+1}\} = \sum_{j=1}^{m} \alpha_{j} \{u\}_{n+1-j} - h \sum_{j=0}^{m} \beta_{j} \{\dot{u}_{n+1-j}\}$$
(6.26)

gdje je $h = t_{n+1} - t_n$ vremenski korak dok je $\{u^T\}_{n+1} = \{\{\dot{q}_{n+1}^T\}, \{q_{n+1}^T\}\}$ vektor stanja dinamičkog sustava u vremenskom trenutku t_{n+1} .

Ukoliko je $\beta_0 \neq 0$ integracijska se shema naziva implicitnom budući je vektor stanja u vremenskom trenutku t_{n+1} funkcija vlastite vremenske derivacije. Zbog toga primijenjena metoda postaje iterativna u slučaju nelinearnog dinamičkog sustava. Za slučaj $\beta_0 = 0$ vektor stanja $\{u\}_{n+1}$ može biti određen direktno iz rezultata prethodnih vremenskih koraka te se metoda naziva eksplicitnom.

Ako pak vrijedi $(\alpha_j = 0 \land \beta_j = 0) \forall (j > 1)$ tada se integracijska shema naziva jednokoračnom budući je vektor stanja sustava u trenutku t_{n+1} isključivo funkcija vektora stanja u prethodnom trenutku t_n . Ovdje će biti korištene jednokoračne metode od kojih je najpoznatija Newmarkova metoda. Ona se

temelji na Taylorovom razvoju u red funkcija brzine i ubrzanja što generalno može biti napisano na sljedeći način;

$$f(t_n + h) = f(t_n) + h f'(t_n) + \frac{h^2}{2} f''(t_n) + \dots + \frac{h^s}{s!} f^{(s)}(t_n) + R_s$$
(6.27)

gdje je s R, označen ostatak razvoja u Taylorov red do zaključno s-tog reda, koji iznosi:

$$R_{s} = \frac{1}{s!} \int_{t_{s}}^{t_{s}+h} f^{(s+1)}(\tau) [t_{n} + h - \tau]^{s} d\tau$$
(6.28)

Korištenjem izraza (6.27) dobiva se pri razvoju u red pomaka do zaključno prve derivacije (s=1):

$$\{q\}_{n+1} = \{q\}_n + h\{\dot{q}\}_n + \int_{t_n}^{t_{n+1}} (t_{n+1} - \tau)\{\ddot{q}\}(\tau)d\tau$$
(6.29)

dok se za razvoj vektora brzine u Taylorov red uz s=0, dobiva:

$$\{\dot{q}\}_{n+1} = \{\dot{q}\}_n + \int_{t_n}^{t_{n+1}} \{\ddot{q}\}(\tau) d\tau$$
(6.30)

Ako se želi prikazati vektor ubrzanja $\{\ddot{q}\}(\tau)$ za $t_n < \tau < t_{n+1}$ pomoću vrijednosti vektora ubrzanja na granicama intervala, slijedilo bi:

$$\{\ddot{q}\}_{n} = \{\ddot{q}\}(\tau) + \{q\}^{(3)}(\tau)(t_{n} - \tau) + \{q\}^{(4)}(\tau)\frac{(t_{n} - \tau)^{2}}{2} + \dots$$
(6.31)

te

$$\{\ddot{q}\}_{n+1} = \{\ddot{q}\}(\tau) + \{q\}^{(3)}(\tau)(t_{n+1} - \tau) + \{q\}^{(4)}(\tau)\frac{(t_{n+1} - \tau)^2}{2} + \dots$$
(6.32)

Množenjem izraza (6.31) s (1- γ) te izraza (6.32) s γ te njihovim zbrajanjem, dobiva se gore spomenuta veza kao:

$$\{\ddot{q}\}(\tau) = (1-\gamma)\{\ddot{q}\}_{n} + \gamma\{\ddot{q}\}_{n+1} + (\tau - h\gamma - t_{n})\{q\}^{(3)}(\tau) + r(h^{2}\{q\}^{(4)})$$
(6.33)

dok se na identičan način, množenjem s (1-2β) i 2β dobiva jednadžba (6.34):

$$\{\ddot{q}\}(\tau) = (1 - 2\beta)\{\ddot{q}\}_n + 2\beta\{\ddot{q}\}_{n+1} + (\tau - 2h\beta - t_n)\{q\}^{(3)}(\tau) + r(h^2\{q\}^{(4)})$$
(6.34)

Zamjenom članova (6.33) i (6.34) u podintegralne članove izraza (6.29) i (6.30) dobivaju se tzv. kvadraturne formule (6.35) i (6.36):

$$\int_{r_{n}}^{t} \{\ddot{q}\}(\tau) d\tau = ((1-\gamma)\{\ddot{q}\}_{n} + \gamma\{\ddot{q}\}_{n+1})\tau|_{t_{n}}^{t_{n+1}} + r_{n} = (1-\gamma)h\{\ddot{q}\}_{n} + \gamma h\{\ddot{q}\}_{n+1} + \{r_{n}\}$$
(6.35)

$$\int_{t_{n}}^{t_{m+1}} (t_{n+1} - \tau) \{\ddot{q}\}(\tau) d\tau = \left(\frac{1}{2} - \beta\right) h^{2} \{\ddot{q}\}_{n} + \beta h^{2} \{\ddot{q}\}_{n+1} + \{r_{n}'\}$$
(6.36)

uz pripadne integrale ostataka:

$$\{r\}_{n} = \left(\gamma - \frac{1}{2}\right)h^{2}\{q\}^{(3)}(\widetilde{\tau}) + r\left(h^{3}\{q\}^{(4)}\right), \{r\}'_{n} = \left(\beta - \frac{1}{6}\right)h^{3}\{q\}^{(3)}(\widetilde{\tau}) + r\left(h^{4}\{q\}^{(4)}\right)$$
(6.37)

uz uvjet $t_n < \hat{\tau} < t_{n+1}$.

1.

Konstante γ i β su parametri povezani s tipom kvadraturne sheme. Odabir $\gamma = \frac{1}{2}$ i $\beta = \frac{1}{6}$ daje linearnu interpolaciju ubrzanja unutar vremenskog intervala $[t_n, t_{n+1}]$:

$$\{\ddot{q}\}(\tau) = \{\ddot{q}\}_{n} + (\tau - t_{n})\frac{\{\ddot{q}\}_{n+1} - \{\ddot{q}\}_{n}}{h}$$
(6.38)

dok odabir $\gamma = \frac{1}{2}$ i $\beta = \frac{1}{4}$ odgovara pretpostavci prosječne vrijednosti ubrzanja unutar promatranog vremenskog intervala:

$$(\ddot{q})(\tau) = \frac{\{\ddot{q}\}_{n+1} + \{\ddot{q}\}_n}{2}$$
(6.39)

Vraćanjem izraza (6.35) i (6.36) u izraze (6.29) i (6.30), dobivaju se sljedeće aproksimativne formule Newmarkove metode za vektore vibracijskog pomaka:

$$q_{n+1}^{2} = \{q_{n+1}^{2} + h\{\dot{q}\}_{n}^{2} + h^{2} \left(\frac{1}{2} - \beta\right) \{\ddot{q}\}_{n}^{2} + h^{2} \beta\{\ddot{q}\}_{n+1}^{2}$$
(6.40)

i vektora vibracijske brzine:

$$\{\dot{q}\}_{n+1} = \{\dot{q}\}_n + (1-\gamma)h\{\ddot{q}\}_n + \gamma h\{\ddot{q}\}_{n+1}$$
(6.41)

Najčešće se Newmarkova metoda koristi za rješavanje linearnog problema

$$[m]\{\ddot{q}\} + [h]\{\dot{q}\} + [k]\{q\} = \{f_i\}(t)$$
(6.42)

gdje su matrice masa, krutosti i prigušenja neovisne o vektoru vibracijskog pomaka $\{q\}$ te slijedi:

$$\begin{bmatrix} m \end{bmatrix} + \gamma h[h] + \beta h^{2}[k] \langle \ddot{q} \rangle_{n+1} = \{ f_{i} \}_{n+1} - [h] \langle \dot{q} \rangle_{n} + (1-\gamma) h \{ \ddot{q} \}_{n}) - [k \left(\{ q \}_{n} + h \{ \dot{q} \}_{n} + \left(\frac{1}{2} - \beta \right) h^{2} \{ \ddot{q} \}_{n} \right)$$

$$(6.43)$$

Na ovaj način definiran problem najčešće se rješava na način da se numerički algoritam Newmarkove metode [99] podjeli na dva dijela i to prediktorski i korektorski dio, što primijenjeno na gore definiran problem linearnih vibracija znači da se numerički algoritam sastoji iz sljedećih dijelova:

prediktorski dio:

$$\{\dot{q}\}_{n+1}^{*} = \{\dot{q}\}_{n} + (1-\gamma)h\{\ddot{q}\}_{n} \quad , \quad \{q\}_{n+1}^{*} = \{q\}_{n} + h\{\dot{q}\}_{n} + \left(\frac{1}{2} - \beta\right)h^{2}\{\ddot{q}\}_{n}$$
(6.44)

korektorski dio:

$$\{\dot{q}\}_{n+1} = \{\dot{q}\}_{n+1}^* + h\gamma\{\ddot{q}\}_{n+1} \quad , \quad \{q\}_{n+1} = \{q\}_{n+1}^* + h^2\beta\{\ddot{q}\}_{n+1} \tag{6.45}$$

Za efikasno korištenje metoda numeričke integracije čiji je predstavnik Newmarkova metoda od presudne je važnosti da metoda zadovoljava dva vrlo bitna zahtjeva a to su konzistentnost i stabilnost.

Konzistentnost je numeričke metode vrlo važan preduvjet konvergencije tj. osiguranja da numeričko rješenje teži ka točnom rješenju ukoliko vremenski korak teži nuli. Ona se temelji na usporedbi vektora $\{u\}_n = \{\{\dot{q}\}_n, \{q\}_n\}^T$ u dva vremenski infinitezimalno udaljena trenutka te je po definiciji integracijska shema konzistentna ako vrijedi:

$$\lim_{h \to 0} \frac{\{u\}_{n+1} - \{u\}_n}{h} = \{\dot{u}\}_n$$
(6.46)

Ovaj uvjet je ispunjen pomoću Newmarkovog integracijskog operatora budući da slijedi:

101

$$\lim_{h \to 0} \frac{\{u\}_{n+1} - \{u\}_n}{h} = \lim_{h \to 0} \left\{ \frac{(1 - \gamma)\{\ddot{q}\}_n + \gamma\{\ddot{q}\}_{n+1}}{\{\dot{q}\}_n + \left(\frac{1}{2} - \beta\right)h\{\ddot{q}\}_n + \beta h\{\ddot{q}\}_{n+1}} \right\} = \left\{ \frac{\{\ddot{q}\}_n}{\{\dot{q}\}_n} \right\} = \{\dot{u}\}_n$$
(6.47)

6.3.1. Stabilnost integracijske metode

Po definiciji integracijska metoda je stabilna [100] ako postoji integracijski korak h_0 pa prema tome za svaki $h \in [0, h_0]$ konačna promjena vektora stanja $\{u\}_n$ u vremenskom trenutku t_n uzrokuje nepovećavajuću promjenu vektora stanja $\{u\}_{n+h}$ računajući u vremenski bliskom trenutku t_{n+h} .

Za Newmarkovu metodu danu relacijama (6.40) i (6.41) jednadžbe gibanja u vremenskom trenutku t_n i t_{n+1} iznose:

$$[m]\{\dot{q}\}_{n} = -[h]\{\dot{q}\}_{n} - [k]\{q\}_{n} + \{f_{i}\}_{n} \qquad i \qquad [m]\{\dot{q}\}_{n+1} = -[h]\{\dot{q}\}_{n+1} - [k]\{\dot{q}\}_{n+1} + \{f_{i}\}_{n+1} \qquad (6.48)$$

Množenjem jednadžbi (6.40) i (6.41) s lijeva matricom masa [m] te korištenjem izraza (6.48) dobivaju se sljedeći izrazi:

$$\begin{split} & [m]\{\dot{q}\}_{n+1} = [m]\{\dot{q}\}_n + h(1-\gamma)(-[h]\{\dot{q}\}_n - [k]\{q\}_n + \{f_i\}_n) + \\ & \gamma h(-[h]\{\dot{q}\}_{n+1} - [k]\{q\}_{n+1} + \{f_i\}_{n+1}) \end{split}$$

$$\begin{split} & [m]\{q\}_{n+1} = [m]\{q\}_n + h[m]\{q\}_{n+1} + h^2 \Big(\frac{1}{2} - \beta\Big)(-[h]\{\dot{q}\}_n - [k]\{q\}_n + \{f_i\}_n) + \\ & \beta h^2 \Big(-[h]\{\dot{q}\}_{n+1} - [k]\{q\}_{n+1} + \{f_i\}_{n+1}) \end{split}$$

$$\end{split}$$

$$(6.49)$$

što u matričnoj formi može biti prikazano kao:

$$\{u\}_{n+1} = [A(h)]\{u\}_n + \{g(h)\}_{n+1}$$
(6.50)

pri čemu su pojedini članovi izraza (6.50) definirani kao:

$$\begin{bmatrix} A(h) \end{bmatrix} = \begin{bmatrix} H_{1}(h) \end{bmatrix}^{-1} \begin{bmatrix} H_{0}(h) \end{bmatrix} , \quad \{g(h)\}_{n+1} = \begin{bmatrix} H_{1}(h) \end{bmatrix}^{-1} \{b(h)\}_{n+1} , \\ \begin{bmatrix} H_{1} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} m \end{bmatrix} + \gamma h \begin{bmatrix} h \end{bmatrix} & \gamma h \begin{bmatrix} k \end{bmatrix} \\ \beta h^{2} \begin{bmatrix} h \end{bmatrix} & \begin{bmatrix} m \end{bmatrix} + \beta h^{2} \begin{bmatrix} k \end{bmatrix} \end{bmatrix} , \quad \{b\}_{n+1} = \begin{cases} (1-\gamma)h \{f_{i}\}_{n} + \gamma h \{f_{i}\}_{n+1} \\ \left(\frac{1}{2} - \beta\right)h^{2} \{f_{i}\}_{n} + \beta h^{2} \{f_{i}\}_{n+1} \end{cases} , \quad (6.51)$$
$$\begin{bmatrix} H_{0} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} m \end{bmatrix} - (1-\gamma)h \begin{bmatrix} h \end{bmatrix} & -(1-\gamma)h \begin{bmatrix} k \end{bmatrix} \\ h \begin{bmatrix} m \end{bmatrix} - \left(\frac{1}{2} - \beta\right)h^{2} \begin{bmatrix} h \end{bmatrix} & \begin{bmatrix} m \end{bmatrix} - \left(\frac{1}{2} - \beta\right)h^{2} \begin{bmatrix} k \end{bmatrix} \end{bmatrix} .$$

Matrica [A(h)] čije su dimenzije 2N, gdje je N broj stupnjeva slobode vibracijskog objekta naziva se matricom pojačanja i vezuje se uz integracijski operator. Na temelju teorije početnog infinitezimalnog poremećaja $\delta\{u\}_a$, uspoređivanjem rješenja jednadžbi gibanja u matričnom obliku (6.50) nastalog uslijed početnog poremećaja te istog bez početnog poremećaja, moguće je problem stabilnosti integracijske metode svesti na problem vlastitih vrijednosti i vlastitih vektora oblika:

$$\det([A(h)] - \lambda[I]) = 0 \tag{6.52}$$

najjednostavnije oblike te matrice kao što je npr. slučaj kod neprigušenih vibracija bez giroskopskog efekta čije se jednadžbe gibanja daju razvezati tako da i - ta razvezana reducirana jednadžba gibanja u općenitom obliku glasi: 10 535

$$\dot{\eta}_m = -\omega^2 \eta_m + \phi_m \tag{6.53}$$

veći od jedinice. Na temelju dobivenih

vlastitih vrijednosti moguće je odrediti

parametre γ i β pri kojima će

vremensko-integracijska shema biti

stabilna, sl. 6.2. Zbog kompleksnosti

matrice pojačanja [A(h)] uvjeti se

stabilnosti izvode najčešće samo za

1 - 4 - 1 - 1

(6.55)

(6.56)

gdje je: $\eta_m - i$ -ta generalizirana koordinata u trenutku t_n ,

 ω - vlastita frekvencija vibracija,

 ϕ_m - faktor utjecaja vibracijskog moda na uzbudu u vremenskom trenutku t_n .

U tom slučaju matrica pojačanja je oblika:

$$A(h)] = \begin{bmatrix} 1 - \gamma \frac{\omega^2 h^2}{1 + \beta \omega^2 h^2} & -\omega^2 h \left(1 - \frac{\gamma}{2} \frac{\omega^2 h^2}{1 + \beta \omega^2 h^2} \right) \\ \frac{h}{1 + \beta \omega^2 h^2} & 1 - \frac{1}{2} \frac{\omega^2 h^2}{1 + \beta \omega^2 h^2} \end{bmatrix}$$
(6.54)

što ima za posljedicu karakterističnu jednadžbu tipa:

$$-\lambda\left(2-\left(\gamma+\frac{1}{2}\right)\xi^{2}\right)+1-\left(\gamma-\frac{1}{2}\right)\xi^{2}=0$$

UZ:

$$h^2 = \frac{\omega^2 h^2}{1 + \beta \omega^2 h^2}$$

Uvjet za dobivanje para konjugirano kompleksnih rješenja problema vlastitih vrijednosti će biti:

21.2

$$\gamma + \frac{1}{2} \bigg)^2 - 4\beta \le \frac{4}{\omega^2 h^2}$$
(6.57)

te su pripadne vlastite vrijednosti oblika:

$$=\rho e^{\pm/\varphi} \tag{6.58}$$

pri čemu se modul i fazni kut tako dobivenih fazora mogu prikazati kao:

$$\rho = \sqrt{1 - \left(\gamma - \frac{1}{2}\right)} \xi^{2} \quad i \quad \varphi = Arc \tan\left(\frac{\xi \sqrt{1 - \frac{1}{4}\left(\gamma + \frac{1}{2}\right)^{2} \xi^{2}}}{1 - \frac{1}{2}\left(\gamma + \frac{1}{2}\right) \xi^{2}}\right)$$
(6.59)

6.4. Procedure za određivanje nelinearnog odziva

Kao što je ranije spomenuto, u principu, nelinearnosti u matematičkom modelu mogu biti dvojake prirode i to geometrijske i materijalne nelinearnosti. Ovaj rad će se baviti isključivo geometrijskim nelinearnostima koje nastaju pri određivanju vektora normalne sile dodira $\{N\}$ (izrazi 2.87...2.92, 2.103...2.105, 3.74, 5.92, 5.96) kod tranzijentnih nelinearnih vibracija koja je funkcija vektora deformacije u kontaktnoj točki $\{\delta\}$ intenziteta (sl. 5.14):

$$\langle \delta \rangle = (u_1 - u_2) \cos \gamma + (v_1 - v_2) \sin \gamma - s \tag{6.60}$$

gdje je s radijalna zračnost rotora, a $\langle \delta \rangle$ je funkcija kuta dodira γ koji se računa iz trenutnog položaja:

$$\gamma = Arc \tan \frac{v_1 - v_2}{u_1 - u_2}$$
(6.61)

Stvari se još dodatno kompliciraju ukoliko se uzima u obzir i fiktivno kontaktno prigušenje (2.107). Jednadžbe gibanja nelinearnog rotordinamičkog sustava (6.1), u modificiranom obliku, mogu se pisati:

$$[m]\{\ddot{q}\} + \{f(q, \dot{q})\} = \{g(q, t)\}$$
(6.62)

uz poznate početne uvjete $\{q_0\}, \{\dot{q}_0\}$, pri čemu je $\{g\}$ vektor vanjskih linearnih sila koje djeluju u čvorovima numeričkog modela, dok vektor $\{f\}$ predstavlja unutrašnje i vanjske nelinearne sile rotordinamičke strukture koje djeluju također u čvorovima matematičkog modela.

Za određivanje tranzijentnog odziva nelinearnog modela koriste se ili čisto implicitne ili implicitno eksplicitne integracijske metode. Eksplicitne metode se koriste rjeđe budući se vektor $\{f\}$ često ne može eksplicitno prikazati kao funkcija vektora $\{q\}$ i $\{\dot{q}\}$. Kod implicitnih algoritama potrebno je u svakom vremenskom trenutku $t + \Delta t$ riješiti sustav nelinearnih jednadžbi [101]:

$$r(\{q\}_{i+\Delta i}) = [m]\{\ddot{q}\}_{i+\Delta i} + \{f\}_{i+\Delta i} - \{g\}_{i+\Delta i} = 0$$
(6.63)

Dinamičko stanje sustava u trenutku $t + \Delta t$ dobiva se integracijom brzina i pomaka korištenjem Newmarkove integracijske sheme s dva parametra β i γ koji definiraju aproksimaciju ubrzanja u razmatranom intervalu vremenskog koraka h. Ukoliko se koristi Newmarkova integracijska shema. tada su predikcijska i korekcijska faza sljedećeg oblika: - predikcijska faza

$$\{q\}_{i+\alpha}^{1} = \{q\}_{i} + h\{\dot{q}\}_{i} + \left(\frac{1}{2} - \beta\right)h^{2}\{\ddot{q}\}_{i}$$

$$\{\dot{q}\}_{i+\alpha}^{1} = \{q\}_{i} + (1 - \gamma)h\{\ddot{q}\}_{i}, \quad \{\ddot{q}\}_{i+\alpha}^{1} = 0$$

$$(6.64)$$

102

- korekcijska faza :

$$\begin{split} i \}_{i+M}^{i+ir} &= \{\ddot{q}\}_{i+M}^{i} + \frac{1}{\beta h^2} \Delta \{q\}_{i+M}^{i+ii}, \\ \dot{q}\}_{i+M}^{i+i} &= \{\dot{q}\}_{i+M}^{i} + \frac{\gamma}{\beta h} \Delta \{q\}_{i+M}^{i+i}, \\ q \}_{i+M}^{i+i} &= \{q\}_{i+M}^{i} + \Delta \{q\}_{i+M}^{i+i}, \end{split}$$

Prije svake korekcijske faze kao dijela Newmarkove integracijske sheme potrebno je izvršiti proračun prirasta vektora pomaka $\Delta \{q\}_{i+k}^{i+1}$. To se provodi rješavanjem nelinearnog sustava (6.63) Newton-Raphsonovom metodom, sl. 6.3. sve dok ostatak r ne zadovolji jednadžbu $r(\{q\}_{i+dr}) = 0$. Pri tome se, s dovoljnom točnošću može provesti linearna aproksimacija Taylorovog razvoja u red ostatka r u okolišu *i*-te iteracije vektora pomaka $\{q\}_{i+y}^{\prime}$:

$$\left(\{q\}_{i+\Delta i}^{i+1}\right) = r\left(\{q\}_{i+\Delta i}^{i}\right) + \left[S\left(\{q\}_{i+\Delta i}^{i}\right)\right]\left(\{q\}_{i+\Delta i}^{i+1} - \{q\}_{i+\Delta i}^{i}\right)$$
(6.66)

pri čemu je s $\left[S(\{q\}_{i+d}^{i})\right]$ označena Jacobijeva tangentna matrica koja je oblika:

$$\left[S\left(\{q\}_{i=di}^{i}\right)\right] = \frac{\partial r}{\partial\{q\}} \bigg|_{\{q\}_{i=d}^{i}}$$
(6.67)

gdje se iz jednadžbe (6.62) generalno dobiva:

$$[S(\lbrace q \rbrace)] = \frac{\partial \lbrace f \rbrace}{\partial \lbrace q \rbrace} + \frac{\partial \lbrace f \rbrace \partial \lbrace \dot{q} \rbrace}{\partial \lbrace \dot{q} \rbrace} + [m] \frac{\partial \lbrace \ddot{q} \rbrace}{\partial \lbrace q \rbrace} - \frac{\partial \lbrace g \rbrace}{\partial \lbrace q \rbrace}$$
(6.68)

čije različite komponente imaju sljedeće značenje:

2 (1)

$$\begin{array}{ll} \hline g \\ \hline g \\ \hline \partial \{q\} \\ \hline \partial \{\phi\} \\ \hline \partial \{\phi$$

Uzimajući u obzir jednadžbe (6.64) i (6.65) Newmarkove metode, dobivaju se preostali članovi izraza (6.68) kao: 11 100

$$\frac{\partial\{\dot{q}\}}{\partial\{q\}} = \frac{1}{\beta h^2} \begin{bmatrix} I \end{bmatrix} \quad \text{te} \quad \frac{\partial\{\dot{q}\}}{\partial\{q\}} = \frac{1}{\beta h} \begin{bmatrix} I \end{bmatrix}$$
(6.69)

čime se doseže konačni oblik Jacobijeve iteracijske matrice:

$$[S(\lbrace q \rbrace)] = [k_{\tau}] + \frac{\gamma}{\beta h} [c_{\tau}] + \frac{1}{\beta h^{2}} [m]$$

Ukoliko se želi da ostatak $r(\{q\}_{t+\omega}^{k+1})$ bude jednak nuli, potrebno je, kako slijedi iz jednadžbe (6.66) riešavati iterativno, nelinearni sustav:

$$\Delta\{q\}_{\ell+\Delta\ell}^{\ell k} = -\left[S\left(\{q\}_{\ell+\Delta\ell}^{\ell}\right)\right]^{-1} r\left(\{q\}_{\ell+\Delta\ell}^{\ell}\right)$$
(6.71)

Na temelju ovako dobivenog prirasta vektora pomaka, računa se nadalje prirast vektora vibracijske brzine i ubrzanja kao i novi položaj vibracijskog sustava iz čega je moguće ponovo izračunati vektor unutarnje i vanjske nelinearne sile koji je kod zapinjanja rotora o ležaj oblika:

$$\{f\{q, \dot{q}\}\} = \{f_{\kappa}\{q\}\} + \{f_{C}\{\dot{q}\}\} + \{f_{zap}\}$$
(6.72)

gdje su

 ${f_{\star}{q}}$ unutrašnje elastične sile kao doprinos tangentne matrice krutosti $[k_{T}],$

 ${f_c{\dot{q}}}$ unutrašnje disipativne i giroskopske sile kao doprinos tangentne matrice

prigušenja $[c_{\tau}],$ vanjske nelinearne

{f ap} sile kontakta.

Unutrašnje elastične i disipativne (giroskopske) sile dobivaju se kao umnošci tangentnih matrica krutosti (prigušenja) i vektora pomaka $\{q\}$ (brzina $\{\dot{q}\}$) i mijenjaju se iz iteracije u iteraciju budući se mijenjaju i tangentne matrice krutosti (prigušenja) kao i vektor pomaka (brzina).

Kao kriteriji konvergencije Newton-Raphsonove metode u literaturi se najčešće spominju sljedeća tri kriterija [102], [103]:

- kriterij norme pomaka

$$\frac{\left\| \Delta q_{\iota+\Delta}^{i} \right\|}{\left\| \Delta q_{\iota+\Delta}^{1} \right\|} \leq \varepsilon_{q}$$

- kriterij norme ostatka (neuravnoteženog opterećenja)

$$\frac{\left\|r_{i+\Delta t}^{i}\right\|}{\left\|r_{i+\Delta t}^{1}\right\|} \leq \varepsilon_{i}$$

SI. 6.3. Newton-Raphsonov iteracijski postupak za rješavanje nelinearnih

vibracija sustava s jednim stupnjem slobode gibanja

.65)

(6.70)

 $\frac{\left\{\! \Delta \boldsymbol{q}_{i+\boldsymbol{\mathcal{M}}}^{\prime} \right\}^{T} \left\{\! \boldsymbol{r}_{i+\boldsymbol{\mathcal{M}}}^{\prime} \right\}}{\left\{\! \Delta \boldsymbol{q}_{i+\boldsymbol{\mathcal{M}}}^{1} \right\}^{T} \left\{\! \boldsymbol{r}_{i+\boldsymbol{\mathcal{M}}}^{1} \right\}} \! \leq \! \boldsymbol{\varepsilon}_{\boldsymbol{\mathcal{W}}}$

pri čemu su norme pomaka i ostatka definirane na sljedeći način:

- kriterij rada neuravnoteženog opterećenja

$$\left| \Delta q_{i+\Delta t}^{\prime} \right| = \sqrt{\left\{ \Delta q_{i+\Delta t}^{\prime} \right\}^{T} \left\{ \Delta q_{i+\Delta t}^{\prime} \right\}}$$
(6.73)

$$\| = \sqrt{\{r'_{t+\Delta t}\}^T \{r'_{t+\Delta t}\}}$$
(6.74)

a prema literaturi [103] uobičajene vrijednosti odstupanja ε_q , ε_r i ε_w iznose:

$$\mathcal{E}_q = \mathcal{E}_r = 10^{-3}, \quad \mathcal{E}_W = 10^{-10} \dots 10^{-6}$$
 (6.75)

6.4.1 Hilbert-Hughes-Taylorova (HHT) α metoda

U slučaju složenijih vibracijskih sustava moguća su neznatna odstupanja parametara γ i β zbog veće složenosti matrice pojačanja [A(h)]. Stvar se dodatno komplicira uvođenjem numeričkog prigušenja u jednadžbe gibanja vibracijskih sustava te je u oba slučaja moguće pomicanje područja stabilnosti danih slikom 6.2. Zbog toga se uobičajeno nastoji ući nešto dublje u područje bezuvjetne stabilnosti uz odabir sljedećih parametara bezuvjetne stabilnosti:

$$\gamma = \frac{1}{2} + \alpha \quad i \quad \beta = \frac{1}{4} \left(\gamma + \frac{1}{2} \right)^2$$
 (6.76)

te uz uvjet $\alpha > 0$. U slučaju $\alpha = 0$ HHT metoda se reducira na Newmarkove sheme. Metoda je naročito učinkovita pri modeliranju numeričkog prigušenja [102] gdje su nelinearne sile oblika:

$$\{f(q, \dot{q})\} = [k]\{q\} + [c]\{\dot{q}\}$$
(6.77)

nakon čega jednadžbe gibanja vibracijskog sustava poprimaju mnogo općenitiji oblik prikladan za korištenje kod modeliranja nelinearnih sustava:

$$m\{\ddot{q}\}_{n+1} + (1-\alpha)\{f(\{q\}_{n+1}, \{\dot{q}\}_{n+1})\} + \alpha\{f(\{q\}_n, \{\dot{q}\}_n)\} = (6.78)$$
$$= (1-\alpha)\{g(\{q\}_{n+1}, t)\} + \alpha\{g(\{q_n\}, t)\}$$

Stabilnost HHT metode ispituje se preko vlastitih vrijednosti matrice pojačanja [A(h)], na sličan način kao i kod Newmarkove metode. Korištenje HHT metode za vibracijske sustave s ograničenim stupnjevima slobode gibanja preporuča se i pri nelinearnoj analizi gdje se traže bezuvjetno stabilni implicitni algoritmi. Međutim iako osigurava bezuvjetnu stabilnost, ovako modificirana shema može bitno promijeniti preciznost korištene Newmarkove metode npr. metode

prosječne vrijednosti ubrzanja, budući se parametar α odabire unutar intervala $\alpha \in [0, \frac{1}{3}]$

7. Programski paket ROTOR

Na osnovi teorijskih spoznaja iznesenih u prethodnim poglavljima sačinjen je programski paket ROTOR, temeljen na metodi konačnih elemenata, koji je namijenjen linearnoj i nelinearnoj analizi fleksijskih vibracija rotordinamičkih sustava. Programski paket je napisan u sklopu matematičke aplikacije MATHEMATICA FOR WINDOWS [104] s time da su dodatno korištene i pojedine rutine iz programskog paketa FORTRAN 90 [105]. Općenito je programski paket podijeljen u dva osnovna programa i to LINEAR i NELINEAR koji se mogu koristiti neovisno jedan od drugog te imaju zajedničke ulazno-izlazne rutine za definiranje linearnih konačnih elemenata te definiranje substruktura kao i asembliranje jednadžbi gibanja te grafičku interpretaciju rezultata. Struktura programskog paketa ROTOR prikazana je na sl. 7.1. U nastavku će biti dan kratki opis programa, zajedničkih ulazno-izlaznih rutina te test primjera.

7.1. Program LINEAR

Program LINEAR namijenjen je za rješavanje problema linearne rotordinamike. Kod linearne rotordinamike kreće se od pretpostavke da se osovina nalazi pod konstantnim opterećenjem npr. zbog težine kod horizontalnih strojeva, zbog čega ona zauzima statički ravnotežni položaj. Osim tog konstantnog opterećenja na osovinu počinju djelovati i vremenski promjenljive sile npr. zbog debalansa te se pobuđuju male vibracije oko statičkog položaja ravnoteže. Stoga se u proračunu moraju linearizirati jednadžbe gibanja oko tog položaja.

Prema vrsti rotordinamičkog problema odabire se, u sklopu prve ulazne procedure, ravninski rotordinamički gredni konačni element opisan u poglavlju 5.3.1. ili prostorni rotordinamički gredni konačni element (poglavlje 5.3.2). Pri tome je moguće odabrati između Bernoulli-Eulerovog ili Timoshenkovog modela grede uz uvođenje ili zanemarivanje unutarnjeg prigušenja grede. Definiranje konačnih elemenata krutih diskova (poglavlje 5.3.3.), kugličnih ležajeva (poglavlje 5.3.4.1), kliznih ležajeva (poglavlje 5.3.4.2) i brtvi (poglavlje 5.3.4.3) također spada u domenu nadležnosti prve ulazne procedure. Temeljne ideje povezane s programiranjem metode konačnih elemenata u elastomehanici preuzete su iz [106].

U sklopu druge ulazne procedure vrši se definiranje substruktura (npr. kao na sl. 5.15). Nakon toga se uobičajeno vrši transformiranje jednadžbi gibanja iz lokalnih koordinatnih sustava u globalni koordinatni sustav ili substrukture ili cjelokupnog rotordinamičkog sustava tj. tzv. asembliranje matrica konačnih elemenata u matrice substruktura ili sustava, (poglavlje 5.3.5).

Nakon određivanja statičkog položaja ravnoteže, oko kojeg se dešavaju male vibracije koje se mogu opisati linearnim modelom, potprogram LINEAR se grana na tri grane od kojih svaka predstavlja specifični problem teorije vibracija.

Prva grana obuhvaća određivanje vlastitih frekvencija i vlastitih oblika vibriranja na nivou substrukture ili cjelokupnog rotordinamičkog sustava a temelji se na teorijskim postavkama iznesenim u poglavlju 6.1. Ovdje je potrebno napomenuti da je za rješavanje ovog problema korišten gotov potprogram DGVCRG iz IMSL biblioteke programskog paketa Fortran 90 pisan u režimu dvostruke preciznosti. Vlastite forme su elipse, te se naposljetku vrši određivanje parametara za njihovu konstrukciju te smjera precesijskog gibanja.

Odziv rotordinamičkog modela na harmonijsku uzbudu određuje se unutar druge grane a numerički model opisan u poglavlju 6.2 rezultira sustavom algebarskih jednadžbi za što je jednostavan ali efikasan rješavač, temeljen na Gauss-Seidelovoj metodi, napisan u sklopu programskog paketa MATHEMATICA FOR WINDOWS. Oblici savijanja zbog uzbude masenim debalansom također

106

. .

mogu biti prikazane u vidu elipsi a postupak njihovog određivanja je isti kao i kod vlastitih oblika vibriranja.

Posljednja grana odnosi se na tranzijentne vibracije koje nastaju pod djelovanjem vremenski proizvoljne uzbude, poglavlje 6.3. Pritom program koristi direktne vremensko-integracijske metode rješavanja jednadžbi gibanja gdje je moguće odabrati neku od Newmarkovih integracijskih shema ili Hilbert-Hughes-Taylorovu shemu za slučaj sumnje u konvergenciju rješenja zbog prisutnosti numeričkog prigušenja. Numerički algoritmi za provođenje spomenutih shema također nisu korišteni gotovi, već su napisani i implementirani u programskom paketu MATHEMATICA FOR WINDOWS.

Izlazna rutina predviđa prikaz numerički dobivenih rezultata u obliku dijagrama i orbita (2D i 3D) i načinjena je također u sklopu programskog paketa MATHEMATICA FOR WINDOWS zbog lakoće baratanja izlaznim rezultatima i njihovog pretvaranja u grafičke objekte.

7.2. Program NELINEAR

Osnovna namjena programa NELINEAR je rješavanje specifičnih problema nelinearne rotordinamike vezanih uz geometrijske nelinearnosti koje se pojavljuju pri određivanju jednadžbi gibanja rotora u ležajevima s suhim trenjem. Iako je program specijaliziran za nelinearne proračune sustava s ležajevima s suhim trenjem moguće ga je eventualno primijeniti i za nelinearne proračune rotora u kliznim ležajevima gdje zbog moguće pojave visokih intenziteta uzbudnih sila pretpostavka malih vibracija oko statičkog ravnotežnog položaja nije više održiva, te jednadžbe gibanja rotora u uljnom filmu više nisu linearizirane. Mogućnost korištenja postoji i u slučaju nelinearnog modeliranja brtvi, pogotovo u slučaju dugih brtvi. No za to svakako postoje i drugi, specijalizirani, postupci koji daju bržu konvergenciju rješenja, opisani npr. u [107] i [108].

Ovaj program također koristi prvu i drugu ulaznu proceduru kao i u slučaju linearnog modela. Između tih procedura definiraju se ležajevi s suhim trenjem kao nelinearni konačni elementi, prema teoriji iz poglavlja 5.3.4.4. te eventualno i drugi, ranije spomenuti, nelinearni konačni elementi.

Budući su Yanabe i ostali u [27] pokazali da nelinearni modeli zapinjanja temeljeni na teoriji kolizije i teoriji kontaktne sile daju identične rezultate to je ovdje odabrana teorija kontaktne sile prema poglavlju 2.6.2.2. Određivanje nelinearne kontaktne sile bit će različito u ovisnosti od toga da li se traži stacionarni (2.6.2.3.) ili tranzijentni odziv (2.6.2.4.). U prvom slučaju korišten je modul vektorske algebre u sklopu MATHEMATICA-e FOR WINDOWS, a u drugom specijalno napisane rutine Newmarkovih ili Hilbert-Hughes-Taylorovih integracijskih shema uz provođenje Newton-Raphsonovog iteracijskog postupka.

Struktura programskog rješenja nelinearnog tranzijentnog odziva programom NELINEAR prikazana je na sl. 7.2. pri čemu program NELINEAR omogućuje analiziranje fenomena zapinjanja rotora uz stator uz klizanje ili fenomena "whipa" i "whirla" suhog trenja koji su rijetki i nastaju pod specifičnim uvjetima opisanim u poglavlju 2.6.2.5.

Grafička interpretacija rezultata u oba slučaja bit će u obliku dijagrama i orbita (2D i 3D).

7.3. Test primjeri

Kvaliteta, točnost i performance programskog paketa ROTOR testirani su na šest primjera. Prva četiri primjera su jednostavnija i služe za usporedbu numerički dobivenih rezultata s u literaturi ranije iznešenim rezultatima dok peti i šesti primjer predstavlja sintezu svih teoretskih spoznaja iznešenih u ovoj disertaciji a dobiveni rezultati bit će uspoređeni s eksperimentalnim rezultatima.

7.3.1. Primjer 1

U sklopu primjera 1, pomoću programskog paketa LINEAR su računate vlastite frekvencije, te vlastite forme vibriranja kao i forme savijanja zbog uzbude masenim debalansom. Diskretizirani model rotora je prikazan na sl. 7.3. [109] pri čemu je rotor diskretiziran s 13 konačnih elemenata jednake duljine l=0.1 m i kružnog poprečnog presjeka promjera d=0.1 m. Veza rotora i temelja ležaja je prikazana linearnim modelom kliznog ležaja s zadanim krutostima:

i prigušenjima:

 $c_{xx} = 5 \cdot 10^2 \text{ Nsm}^{-1}, c_{yy} = 7 \cdot 10^2 \text{ Nsm}^{-1}, c_{xy} = c_{yx} = 0.$

 $k_{\rm ver} = 50 \cdot 10^6 \,\,{\rm Nm^{-1}}, k_{\rm ver} = 70 \cdot 10^6 \,\,{\rm Nm^{-1}}, k_{\rm ver} = k_{\rm ver} = 0$

Na modelu se nalaze tri diska i to prvi u čvornoj točki 3, debljine b_1 =0.05 m, unutarnjeg promjera d_{u1} =0.1 m i vanjskog promjera d_{v1} =0.24 m. Drugi disk u čvornoj točki 6 je debljine b_2 =0.05 m, unutarnjeg promjera d_{u2} =0.1 m i vanjskog promjera d_{v2} =0.4 m. Podaci za treći disk, u čvornoj točki 11, su sljedeći

 $b_3=0.06$ m, $d_{u3}=0.1$ m i vanjski promjer $d_{v3}=0.4$ m. Osovina i diskovi su izrađeni iz čelika sljedećih elastomehaničkih karakteristika: $E = 0.2 \cdot 10^{12}$ Nm⁻², $\rho = 7800$ kgm⁻³, $\nu = 0.3$. Kod računanja prisilnih vibracija uslijed debalansa uzet je maseni debalans od 20 gmm na srednjem disku.

Pri modeliranju korišten je Timoshenkov rotordinamički gredni prostorni konačni element, koji ne zanemaruje posmične deformacije, opisan u poglavlju 5.3.2. Disk je modeliran na osnovu teorije iznesene u poglavlju 5.3.3. koja uzima u obzir i giroskopski efekt. Postupak određivanja vlastitih frekvencija i vlastitih formi vibriranja prikazan je u poglavlju 6.1., a stacionarnog odziva debalansa u poglavlju 6.2.

Numerički dobiveni rezultati pokazuju potpuno slaganje s rezultatima danim u literaturi [109] i to što se tiče vlastitih frekvencija i formi vibriranja, te orbita uslijed odziva debalansa. Prve dvije kritične brzine su u horizontalnom smjeru dobivene $\omega_{1H} = 379.1 \text{ rads}^{-1}$ i $\omega_{2H} = 1050.0 \text{ rads}^{-1}$ a u vertikalnom smjeru $\omega_{1P} = 397.7 \text{ rads}^{-1}$ i $\omega_{2P} = 1181.1 \text{ rads}^{-1}$. Orbite uslijed prisilnih vibracija debalansa, koje su prikazane na sl. 7.4...7.11, potvrđuju te vrijednosti a uzimajući u obzir da su na svakoj od tih slika prikazani i oblici savijanja koji spajaju pripadne točke orbita (puna linija za oblik pod 0⁰, isertkana linija za oblik pod 90⁰) to je moguće utvrditi i smjer precesije. Prikazane orbite također potvrđuju poznato pravilo da rotor ispod prve (druge) horizontalne i iznad prve (druge) vertikalne kritične brzine precesira napredno dok jedino u relativno uskom frekventnom području između prve (druge) horizontalne i prve (druge) vertikalne kritične brzine, on precesira natražno.

U sklopu ovog primjera analizirani su i rezultati (vlastitih frekvencija i oblika vibriranja) niza rotordinamičkih konfiguracija izneseni u [110] i [111] i koji su pokazali odlično slaganje s izračunatim vrijednostima, ali zbog ograničenosti prostora ovdje neće biti iznešeni.

SI.7.4. Orbite i fleksijski oblici pri @=350.1 rads⁻¹

SI.7.5 Orbite i fleksijski oblici pri ω =379.1 rads⁻¹

SI.7.6 Orbite i fleksijski oblici pri @=384.0 rads⁻¹

SI.7.8 Orbite i fleksijski oblici pri ω=397.7 rads⁻¹

SI.7.7 Orbite i fleksijski oblici pri w=387.0 rads⁻¹

SI.7.9 Orbite i fleksijski oblici pri @=1050.0 rads⁻¹

SI.7.10 Orbite i fleksijski oblici pri w=1180.0 rads⁻¹

SI.7.11 Orbite i fleksijski oblici pri @=1757.0 rads¹

7.3.2. Primjer 2

Primjer 2 odnosi se na proračun bezdimenzijskih koeficijenata krutosti limunskog kliznog ležaja i mogao bi se provesti, uz sitne modifikacije, na dva načina. Prvi način je u sklopu lineariziranog modela gdje postoji linearna zavisnost sile u uljnom filmu i koeficijenata krutosti i prigušenja te je polje tlakova i koeficijente krutosti i prigušenja dovoljno proračunati samo jednom za definiranu rotordinamičku konfiguraciju. Drugi način korištenja je u sklopu nelinearnog modela gdje bi se proračun krutosti i prigušenja ležaja provodio unutar Newton-Raphsonovog iteracijskog postupka u sklopu Newmarkove ili Hilbert-Hughes-Taylorove α metode.

U ovom primjeru definirani su sljedeći ulazni parametri, sl.7.12.: kutovi segmenata: $\phi_1 = \pi/2, \quad \phi_2 = 3\pi/2, \quad \phi_{s1} = \phi_{s2} = 0,$ radijalna zračnost: $h_0 = 0.1 \cdot 10^{-4}$ m, radijus osovine: $R = 4.99 \cdot 10^{-2}$ m, radijus ekscentriciteta centara segmenata: $r_p = 5 \cdot 10^{-3}$ m, ekscentricitet osovine: $\varepsilon = 50.10^{-6}$ m, brzina promjene ekscentriciteta osovine: $\dot{\varepsilon} = 0 \text{ ms}^{-1}$ širina ležaja: $B = 5 \cdot 10^{-2}$ m, kinematički viskozitet ulja : v=300·10⁻⁶ $m^{2}s^{-1}$ broj podjela mreže (sl. 5.9.): m = 80radijalni smjer aksijalni smjer n=20kutna brzina vrtnje: $\omega = 100 \cdot \pi \text{ rads}^{-1}$. Prema izrazu (5.78) prvo su izračunate funkcije debljine uljnog filma koje u konkretnom primjeru limunskog ležaja iznose:

SI. 7.12. Geometrija i kinematika limunskog ležaja

 $H_1(\varphi) = 51-50.25 \cdot \cos \varphi + 0.433013 \cdot \sin \varphi$, $H_2(\varphi) = 51-49.75 \cdot \cos \varphi - 0.433013 \cdot \sin \varphi$ a zatim su u skladu s teorijom iznešenom u poglavlju 5.3.4.2. izračunati raspodjela tlaka u ležaju te bezdimenzijske krutosti i prigušenja. Numerički rezultati u obliku polja tlakova prikazani su na sl.

112

5.10 a u obliku bezdimenzijskih krutosti γ_{ik} i prigušenja β_{ik} na sl. 5.11 i 5.12. Usporedbom s rezultatima Shaffratthovog proračuna [89] vidljiva je odlična podudarnost numeričkih rezultata dobivenih ROTOROM, koji su publicirani u [87] a gdje je posebna pažnja posvećena korištenju novih numeričkih metoda (SOR, ADI) koje omogućavaju bržu konvergenciju (desetak puta) u odnosu na klasične metode.

7.3.3. Primjer 3

Programski paket NELINEAR poslužio je za izradu primjera 3 u kojemu je računat stacionarni nelinearni odziv Jeffcottovog rotora prikazanog na sl. 2.17. Nelinearni model zapinjanja je temeljen na teoriji kontaktne sile tj. prema jednadžbama (2.87)....(2.92) a normalna sila je određena prema teoriji iznešenoj u poglavlju 2.6.2.3. uz uvjet apsolutne krutosti dodirne točke rotora i statora δ =0. Pomaci rotora i statora u točki kontakta određeni su uporabom vektorske algebre prema izrazima (2.93)....(2.103).

Pretpostavljeni parametri dinamičkog sustava su sljedeći:

krutost osovine rotora	$k_r = 46.4 \cdot 10^3 \text{ Nm}^{-1}$,
masa diska rotora	$m_r = 0.5 \text{ kg},$
frekventni opseg	$\Omega = 0600 \text{ rads}^{-1}$.
broj podjela frekventnog opsega	600
unutarnje prigušenje rotora	$c_r = 15.21 \text{ Nsm}^{-1}$
krutost statora	$k_s = 92.8 \cdot 10^3 \text{ Nm}^{-1}$
ekscentricitet mase	$a=25.10^{-6}$ m,
radijalna zračnost	s=2a m.

Prvi dio proračuna kod ovog primjera odnosio se je na variranje prigušenja ležaja, a samim time i omjera prigušenja statora D_s , uz zanemarivanje mase statora i koeficijenta trenja ($m_s=\mu=0$). Izračunate krivulje normiranih amplituda pomaka rotora, faznog kuta i kontaktne sile, unutar frekventnog opsega prikazane su na sl. 2.21a. U drugom dijelu ovog primjera varirani su koeficijenti trenja u dodirnoj točki $\mu=0...1.5$ pri konstantnoj vrijednosti koeficijenta prigušenja bezmasnog statora $c_s=21.3$ Nsm⁻¹ a rezultati proračuna su dani na sl. 2.21b. Konačno, treći dio proračuna kod ovog primjera odnosi se na variranje mase statora pri konstantnoj vrijednosti koeficijenta prigušenja statora $c_s=21.3$ Nsm⁻¹ za slučaj kontakta bez trenja $\mu=0$. Uzeta su u obzir četiri karakteristična slučaja omjera masa v=0.,1. i 2.,3. a rezultati proračuna su prikazani na sl. 2.22.

U sva tri slučaja dobiveni numerički rezultati su potpuno identični rezultatima Markerta i Wegenera [32] a eksperimentalnu potvrdu su dali Abraham, Markert i Witfeld [35].

7.3.4. Primjer 4

U sklopu primjera 4 računat je tranzijentni nelinearni odziv Jeffcottovog rotora prikazanog na sl. 2.17. Nelinearni model zapinjanja je temeljen na teoriji kontaktne sile a ona je za tranzijentni model definirana u poglavlju 2.6.2.4. uz numeričko izračunavanje vektora deformacije u kontaktnoj točki š unutar svake nove iteracije. Postupak proračuna pojašnjen je u poglavlju 6.4. Budući se radi o identičnom rotordinamičkom sustavu kao i u primjeru 3, ovdje će biti navedeni samo oni parametri dinamičkog sustava koji ranije nisu bili potrebni za proračun:

prigušenje statora	$c_s = 21.3 \text{ Nsm}^{-1}$
koeficijenti trenja u dodirnoj točki	μ=0.1
omjera masa	v=0.
kontaktna krutost	$k_{k}=15\cdot k_{r}$
kontaktno prigušenje	$c_{k}=0.$

	A	A REAL PROPERTY AND	11 A 11 A 14				
٢.,		LI D	the second second	1.	11.0		- C - C - C - C - C - C - C - C - C - C
	21011	11C - 11	OKTOP	01/0	TIC	ortan	110
۰.	~	10-0	ORIOI	Sha	UL2	CILAC	10
	· · · ·						

početni položaj rotora u odnosu na ravnotežni početni položaj statora u odnosu na ravnotežni					
početne brzine rotora					
	$\dot{x}_{s0} = 0., \dot{y}_{s0} = 0.$				
dizanje	<i>ω</i> =185⋅t s ⁻¹				
spuštanje	$\omega = 600 - 185 \cdot t s^{-1}$				
	avnotežni avnotežni dizanje spuštanje				

U sklopu ovog primjera provedena su ukupno dva proračuna i to proračun startanja i proračun zaustavljanja rotora. Rezultati proračuna, prikazani na sl.2.23 punom crtom za startanje a crtkanom crtom za zaustavljanje, pokazuju da se rotor ponaša u potpunosti u skladu s teorijom iznesenom u poglavlju 2.6.2.4. tj. da je slaganje dobivenih rezultata pomoću programa NELINEAR s rezultatima Markerta i Wegenera [32] odlično.

7.3.5. Primjer 5

U primjeru 5 vršen je proračun vlastitih frekvencija, te vlastitih formi vibriranja kao i formi savijanja zbog uzbude masenim debalansom, modela rotora na sl. 7.13., pomoću programskog paketa LINEAR. Diskretizacija modela rotora je provedena sa 7 grednih rotordinamičkih 3-D konačnih

elemenata i 8 pripadnih čvorova, sl. 7.14. Materijal rotora je čelik sa modulom elastičnosti $E = 0.21 \cdot 10^6$ Nmm⁻², gustoćom $\rho = 7800$ kgm⁻³. Tabela 7.1 prikazuje geometrijska svojstva konačnih elemenata i diskova rotora.

			Disk							
i	1	2	3	4	5	6	7	1	2	3
l, mm	41.7	33	28	113.8	114.5	34	35	20	20	20
d_i mm	15	15	10.15	10.15	10.15	10.15	15	120	120	120

Tab. 7.1. Geometrijska svojstva konačnih elemenata i diskova rotora

Na numeričkom modelu su postavljene 4 koncentrirane mase. Prva masa predstavlja elastičnu spojku na početku rotora dok ostale tri mase predstavljaju tri diska smještena uzduž rotora. Tablica 7.2 prikazuje z koordinate pojedinih čvorova i njima pripadne koncentrirane mase i momente inercije.

Čvor broj	1	2	3	4	5	6	7	8
z, mm	0.0	41.7	74.7	102.7	216.5	331	365	400
m _i kg	0.1	0.0	0.0	1.71	1.71	1.71	0.0	0.0
$J_z \mathrm{kgm}^2$	10.10-6	0.0	0.0	3.0.10-3	3.0.10-3	3.0.10-3	0.0	0.0
$J_x \text{kgm}^2$	5.5.10-6	0.0	0.0	1.6.10-3	1.6.10-3	1.6.10-3	0.0	0.0
$J_y \mathrm{kgm}^2$	5.5·10 ⁻⁶	0.0	0.0	1.6.10-3	1.6.10-3	1.6.10-3	0.0	0.0

Tab. 7.2. Smještaj koncentriranih masa

Elastični ležajevi koji podupiru rotor zamijenjeni su za potrebe linearnog proračuna sa po dvije ortogonalne krutosti i prigušenja. Zbog promatranja problema u horizontalnoj i vertikalnoj ravnini razlikuju se horizontalne i vertikalne krutosti i prigušenja za svaki pojedini ležaj. Uzeto je da su krutosti za oba ležaja jednake te tako za horizontalni smjer iznose $k_h = 10^6$ Nm⁻¹ dok za vertikalni smjer iznose $k_v = 4.5 \cdot 10^6$ Nm⁻¹. Usvojeno je isto tako da su prigušenja za oba ležaja i za oba razmatrana smjera jednaka te iznose $c_h = c_v = 50$ Nsm⁻¹.

Numerički dobivene vlastite frekvencije prikazane su u Campbell-ovom dijagramu na slici 7.15 dok su kritične brzine vrtnje dane u tablici 7.3.

Sl. 7.15. Campbell-ov dijagram

Broj	Ravnina vibriranja	Kritične brzine n _k , Hz
1	Horizontalna	30.9
2	Vertikalna	33.0
3	Horizontalna	99.3

Tab. 7.3. Kritične brzine vrtnje od 0 do 100 Hz

Nakon završenog proračuna vlastitih frekvencija može se, u sklopu programa LINEAR, pristupiti proračunu odziva modela na harmonijsku uzbudu. Računate su fleksijske vibracije uslijed neuravnoteženosti klase G 2.5 čemu odgovara debalans koji je u vrijednosti od 25 gmm stavljen istosmjerno na svaki od tri diska. Unutar programa LINEAR traži se odziv debalansa u obliku horizontalnog i vertikalnog pomaka. Iz tih pomaka kasnije se slaže eliptična putanja spomenute čvorne točke rotora. Iz slika 7.16 i 7.17 da se vidjeti odziv 6. čvorne točke rotora (odgovara poziciji 3. diska) za frekventno područje od 0-100 Hz u obliku horizontalnog i vertikalnog pomaka. Maksimalne amplitude na slikama 7.16 i 7.17 odgovaraju kritičnim brzinama rotora koje su izračunate u sklopu proračuna rotorovih vlastitih frekvencija. Ako se zna da je nominalna brzina vrtnje rotora 3000 omin⁻¹ (ili 50 Hz) tada su zanimljive samo prve dvije kritične brzine. Na slikama 7.18 i 7.19 vidljive su njima pripadne forme vibriranja. Slika 7.20 prikazuje orbite 6. čvora modela kod prve horizontalne i prve vertikalne vlastite frekvencije.

SI. 7.16 Proračunski odziv uzbude debalansom za 6. čvornu točku modela u frekventnoj domeni 0-100 Hz, horizontalni smjer

SI. 7.17 Proračunski odziv uzbude debalansom za 6. čvornu točku modela u frekventnoj domeni 0-100 Hz. vertikalni smjer

SI. 7.18 Prisilna forma vibriranja dobivena proračunom kod prve horizontalne vlastite frekvencije $f_{lb} = 30.9 Hz$

SI. 7.19 Prisilna forma vibriranja dobivena proračunom kod prve vertikalne vlastite frekvencije $f_{1v} = 33.0 \text{ Hz}$

7.3.6. Primjer 6

e

Primjer 6 poslužio je za proračun tranzijen-nog nelinearnog odziva modela rotora na sl. 7.13. programom NELINEAR. Kao i u primjeru 5 rotor je diskretiziran s 7 konačnih elemenata te vrijede svi podaci navedeni u tabelama 7.1 i 7.2. U odnosu na linearni model prikazan na sl. 7.14. zamijenjeni su elastični ležajevi na pozicijama 2 i 8, modelirani sa po dvije ortogonalne krutosti i prigušenja, s ležajevima s suhim trenjem, sl. 5.14. Osim toga uzeta je u obzir težina rotora te prigušenje u osovini. Ostali parametri modela su sliedeće:

 $v_7 = -85 \cdot 10^{-6}, v_8 = -50 \cdot 10^{-6}.$

 $\Omega = 400 - 10 \cdot t \text{ rads}^{-1}$

10000 α=0.08

Security framerical sector second second						
rutost opruga ležaja:	horizontalna	$k_x=0.5\cdot10^6$ Nm ⁻¹ ,				
	vertikalna	$k_{\rm y}=0.45\cdot10^9~{\rm Nm}^{-1}$				
nasa ležaja s suhim trenjer	n	m = 0.2 kg,				
ontaktna krutost		$k_{\kappa}=0.2\cdot10^9$ Nm ⁻¹ ,				
ontaktno prigušenje		$c_{K}=0.0 \text{ Nsm}^{-1}$,				
oeficijent trenja u dodirno	oj točki	μ=0.05,				
adijalna zračnost		$s=50.10^{-6}$ m				
rigušenje u osovini		$\eta_{v}=10., \eta_{H}=0.,$				
kscentricitet mase (na disl	covima)	$a=40.10^{-6}$ m,				
očetni pomaci rotora u ve	rtikalnom smjeru	$y_1 = -85 \cdot 10^{-6}, y_2 = -50 \cdot 10^{-6}, y_3 = -85 \cdot 10^{-6},$				
		$y_4 = -0.12 \cdot 10^{-3}, y_5 = -0.16 \cdot 10^{-3}, y_6 = -0.12 \cdot 10^{-3$				

svi početni pomaci rotora u horizontalnom smjeru kao i početne brzine u oba smjera jednaki su nuli. zakon promjene kutne brzine broj vremenskih podjela parametar HHT metode kriterij norme ostatka

Na slikama 7.21...7.30 su prikazani najbitniji rezultati SI. 7.21. proračuna. prikazuje horizontalni odziv diska u čvornoj točki 6 a sl. 7.22. njegov odziv. U vertikalni usporedbi sa slikama 7.16. i 7.17. vidljivo je da su u ovom slučaju mnogo šira i izraženija područja kritičnih brzina vrtnje i to djelomično zbog proračuna tranzijentnih vibracija te djelomično zbog

SI. 7.21. Nelinearni horizontalni odziv rotora u čvornoj točki 6

uključivanja nelinearnosti ležaja u model. Osim toga na slikama su vidljiva i karakteristična iskrivljavanja krivulje tranzijentnog odziva zbog nelinearnosti vibracijskog sustava (sl. 2.16a i 2.16b). Proračun za startanje rotora nije vršen budući je iz primjera 4, usporedbom s rezultatima Jeffcottovog rotora, zaključeno da bi takav model dao još mnogo veće odzive (sl. 2.23), te bi zbog sve većeg i većeg unošenja energije u sustav mogao ući u područje rezonantne nestabilnosti. Budući bi se tada pojavili problemi s izlaskom iz nestabilnosti, došla bi u pitanje i sigurnost modela i mjerne opreme.

11.

Stoga niti eksperiment s startanjem rotora, kao što će to kasnije u eksperimentalnom dijelu biti vidljivo, nije proveden Nadalje, na sl. 7.23. i 7.24. prikazane su oblici vibriranja rotora uzrokovani uzbudom debalansom kod prve horizontalne i vertikalne vlastite frekvencije s time da se svaka orbita sastoji od od 30 sljednih proračunatih točaka. Proračunati smjerovi

orbita odgovaraju teoriji tj. kod prve horiz. vlastite frekvencije radi se o naprednoj a kod prve vert. o natražnoj precesiji.

SI. 7.23 Nelinearna prisilna proračunska forma vibriranja kod prve horiz. vlastite frekvencije $f_{1h} = 29.4$ Hz

SI. 7.24 Nelinearna prisilna proračunska forma vibriranja kod prve vertik. vlastite frekvencije f_{th} = 32.5 Hz

18

R Žigulić-Doktorska disertacija

121

Orbita na disku 6 pri prvoj horizontalnoj

vlastitoj frekvenciji $f_{lh} = 29.4$ Hz

prikazana je na sl.7.25 dok je na sl.7.26.

prikazana orbita pri prvoj vertikalnoj

vlastitoj frekvenciji $f_{lh} = 32.5$ Hz. Kao

primjer prikaza gibanja konačnog

elementa ležaja s suhim trenjem uzete su

orbite u čvornoj točki 8 te su tako na

dijagramima 7.27. a i b prikazane orbite

pri prvoj horizontalnoj i vertikalnoj

vlastitoj frekvenciji rotorskog dijela a na

sl. 7.28. a i b statorskog dijela. Pomaci

statorskog dijela su očekivano mnogo

manji od pomaka rotorskog dijela i u oba

slučaja predstavljaju gotovo horizontalne

krivulje budući statorski dio ležaja s

suhim trenjem ima mnogo višu vertikalnu

od horizontalne vlastite frekvencije. Orbite rotorskog dijela ležaja s suhim

trenjem u čvoru 8 pokazuju da je rotor

kod prve horizontalne vlastite frekvencije

u ležaju bio u stalnom kontaktu s

statorskim dijelom i to samo u donjem

122

ωμg

Deformacija

Deformacija $\delta \ \mu \ m$

0

Kut kontakta γ

25.16-38.14 Hz

dijelu ležaja dok je kod prve vetikalne vlastite frekvencije rotor bio također u permanentnom kontaktu, kružeći pritom uokolo po cijelome ležaju gibajući se na granicama radijalne zračnosti sl.7.27.b. Navedene tvrdnje mogu se još bolje pojasniti ukoliko se promatraju dijagrami na sl. 7.29 a), b) i c) koji prikazuju intenzitet deformacije δ u frekventnom području zaustavljanja rotora te dijagrami 7.30 a) i b) koji prikazuju kut kontakta rotora y. Iz tih je dijagrama vidljivo da je rotor gotovo cijelo vrijeme zaustavljanja bio u kontaktu s donjim dijelom ležaja s suhim trenjem, zbog vlastite težine. U područjima prve horizontalne i vertikalne vlastite frekvencije rotor je također bio u stalnom kontaktu s ležajem, s relativno visokim intenzitetima deformacije δ a samim time i visokim intenzitetima normalne komponente kontaktne sile N (2.104). Razlika između gibanja u područjima prve horizontalne i vertikalne vlastite frekvencije vidljiva je iz dijagrama izračunatih vrijednosti kuta y (6.61), sl. (7.30 a) i b)) gdje u području prve horizontalne vlastite frekvencije kut jako malo varira oko vrijednosti $\gamma=270^{\circ}$ te se rotor kao što je ranije rečeno giba samo u donjem dijelu ležaja dok u području prve vertikalne vlastite frekvencije kut γ mijenja vrijednost od 0 do 360⁰ te se rotor giba kružeći uokolo. Iz dijagrama 7.29 a), b) i c) su vidljivi i odskoci rotora između vlastitih frekvencija i iznad

prve vertikalne vlastite frekvencije koji nastaju zbog gubitka kontakta 8<0. Pritom i kod tih odskoka kut y poprima različite vrijednosti 0 do 360º a spomenuto se ponašanje rotora može objasniti gibanjem u blizini vertikalne vlastite frekvencije (vertikalne orbite) ali još uvijek dovoljno daleko da bi, prilikom odskoka, bio uspostavljen kontakt s nekom točkom na gornjem dijelu ležaja. Veći broj odskoka iznad prve vertikalne vlastite frekvencije od broja odskoka između vlastitih frekvencija da se objasniti većom uzbudnom silom koja podiže rotor iz kontakta u doljnjem dijelu ležaja.

Vrlo bitan element provođenja kompjuterskog proračuna je i vrijeme korištenja CPUa. Nelinearni proračuni su vrlo složeni i kod njih su ta vremena jako velika. Za provođenje istog primjera u sklopu programa LINEAR (primjer 5, diskretizacija rotora s 7 konačnih elemenata i 8 čvornih točaka) potrebno je utrošiti oko pet minuta dok je za potrebe ovog primjera (diskretizacija rotora s 7 konačnih elemenata i 10 čvornih točaka, 10000 vremenskih iteracija) koji koristi nelinearnu analizu, računalo PENTIUM III na 733 MHz s 256 Mb RAMa moralo biti korišteno oko tri sata i trideset minuta. Broj Newton-Raphsonovih iteracija unutar svake vremenske iteracije iznosio je u prosjeku oko desetak s time da je poprimao i vrijednosti preko dvadeset i to u području prve vertikalne vlastite frekvencije. Zbog relativno velikog vremena korištenja CPUa kod nelinearnog proračuna, uobičajeno se koristi nizak stupanj diskretizacije (ovdje samo 7 konačnih elemenata) koji još uvijek daje zadovoljavajuće rezultate za objašnjenje nekog dinamičkog fenomena, a u slučaju složenijih rotordinamičkih modela koristi se kombinacija metode konačnih elemenata i fizikalno-modalnog modela čime se reducira broj stupnjeva slobode modela a samim time i smanjuje vrijeme korištenja **CPUa**

8. Mjerenje vibracija rotora i usporedba s rezultatima proračuna

Za potrebe ispitivanja izrađen je rotor po dimenzijama identičan numeričkom modelu rotora što ga prikazuju slike 7.13 i 7.14. kako bi se mogla provesti direktna usporedba rezultata ispitivanja sa rezultatima proračuna. Ispitivanje je provedeno na, za tu svrhu, preuređenom stroju za uravnotežavanje sa ležajevima s suhim trenjem. Oba ležaja su bila izrađena iz bronze s nominalnim promjerom ϕ 15.1 mm. Tijekom ispitivanja ležajevi su bili podmazani samo sa nekoliko kapi ulja. Slika 8.1 prikazuje ispitivani rotor sa mjernom opremom, dok slika 8.2. shematski pokazuje smještaj mjernih senzora i senzora brzine vrtnje. Prije početka mjerenja utvrđeno je da rotor pri n=3000 omin⁻¹ zadovoljava neuravnoteženost G2.5. Za ispitivanje vibracija rotora bio je korišten Schenckov *Vibroport 41* sa beskontaktnim senzorima pomaka VIBRONECS IN-085 osjetljivosti 8 mVµm⁻¹. Analiza mjerenja bila je provedena u također Schenckovom *Vibroexpertu* [112], te u matematičkom paketu *Mathematica* posebno napravljenim aplikcijama za prikazivanje rezultata mjerenja. Temeljni principi mjerenje za rotore u kliznim ležajevima dani su u [113], a za rotore kod kojih se javlja zapinjanje o ležaj u [114].

Sl. 8.1. Ispitivani rotor sa mjernom opremom

Dinamika rotora u kliznim ležajevima

Od metoda određivanja vlastitih frekvencija odlučeno je da se primjeni metoda prolaska kroz kritične brzine vrtnje tzv. tracking, pošto bi udaranje rotora udarnim čekićem tzv. single shot zbog smetnji kod rotacije trebalo izvesti jako velikom silom. Mjerenje vibracija sa beskontaktnim senzorima nije bilo moguće provesti na svim karakterističnim točkama rotora kao što se u početku mislilo. Glavno ograničenje je bilo to što mjerna oprema ne daje točna mjerenja na osovinama sa promjerom manjim od ¢40 mm. Po tome mjerenje je bilo moguće izvesti samo na diskovima koji imaju promjer ¢120 mm. Slike 8.3 i 8.4 prikazuju redom rezultate mjerenja metodom prolaska kroz kritične brzine vrtnje tzv. Single tracking vs. Speed za horizontalni i vertikalni smjer. Iz slika 8.3 i 8.4 je vidljivo da se rotor ponaša nelinearno jer su vrhovi kritičnih brzina kod snimki pomaka sakriveni unutar područja nestabilnosti, tako da se kritične brzine očitavaju iz pripadnih dijagrama faznog kuta. U tablici 8.1 se nalaze izračunate i izmjerene vrijednosti kritičnih brzina vrtnje.

avnina vibrirania	Kritične brzine n _{kr} Hz		
aviina vioinaija	Program LINEAR	Program NELINEAR	Mjerenje
Horizontalna	30.9	29.4	30.3
Vortikalna	33.0	32.5	34.1
	Horizontalna Vertikalna	Avnina vibriranjaProgram LINEARHorizontalna30.9Vertikalna33.0	Avnina vibriranjaProgram LINEARProgram NELINEARHorizontalna30.929.4Vertikalna33.032.5

Tab. 8.1 Usporedba izračunatih i izmjerenih kritične brzine vrtnje

SI. 8.3. Mjerenje vibracija trećeg diska pri zaustavljanju rotora od 3600 do 600 min⁻¹, horizontalni smjer

Sl. 8.4. Mjerenje vibracija trećeg diska pri zaustavljanju rotora od 3600 do 600 omin⁻¹, vertikalni smjer

Sl. 8.5 Kaskadni dijagram izmjeren na 3. disku rotora, horizontalni smjer

10.0

126

Usporedbom izračunatih i izmjerenih vrijednosti kritičnih brzina vrtnje, tabela 8.1, moguće je zaključiti da su podudaranja vrlo dobra budući se kreću u rasponu od maksimalno 1.5 Hz te da su rezultati dobiveni nelinearnim proračunom općenito niži od rezultata dobivenih linearnim proračunom. Najočitija razlika može se uočiti kod vertikalne vlastite frekvencije i to između mjerenja i proračunat programom NELINEAR. To se može jednostavno objasniti činjenicom da su izmjerene i proračunate kritične brzine vrtnje određene različitim postupcima. I dok su izmjerene kritične brzine očitavan na temelju promjene faznog kuta, izračunate vlastite frekvencije očitavane su na osnovu izmjerene maksimalne amplitude. Ako bi se i izmjerene kritične brzine očitale na osnovu izmjerene maksimalne amplitude, razlike bi bile znatno manje. Općenito moguće je zaključiti, što se tiče određivanja kritičnih brzina vrtnji, da je kod ovakvog tipa rotora ekonomičnije koristiti linearni proračun jer daje slične rezultate kao i nelinearni proračun ali uz znatnu uštedu vremena korištenja CPUa.

Što se pak tiče izračunatih (slike 7.16. i 7.17. za linearni te 7.21. i 7.22. za nelinearni proračun) i izmjerenih vrijednosti vibracijskih pomaka (slike 8.3 i 8.4) i orbita kod kritičnih brzina vrtnje (slike 7.16. i 7.17. za linearni te 7.21. i 7.22. za nelinearni proračun uz slike 8.3 i 8.4 kao rezultate eksperimenta) nameće se zaključak da rezultati nelinearnog proračuna mnogo realnije prate rezultate eksperimenta, te je nelinearni proračun svakako potrebno koristiti za bilo kakvu ozbiljniju analizu rotordinamičkih sustava u kojima se pojavljuju nelinearnosti. Nelinearni proračun omogućava korisniku mnogo plastičniji uvid u dinamiku interakcijskog gibanja rotora i kliznog ležaja u svakom vremenskom trenutku.

Konačno potrebno je pojasniti i fenomen koji se javlja na slikama 8.3 i 8.4 a odnosi se na pomake rotora u horizontalnom i vertikalnom smjeru pri izuzetno niskim brzinama vrtnje, dok se kod rezultata proračuna takvi rezultati ne pojavljuju. Radi se greškama (neravninama) u strojnoj izradi diska na kojemu se vrši mjerenje pri čemu izrađeni disk nije kružan već eliptičan. Budući se mjerenje vrši na površini diska a ne u geometrijskom centru veze diska i osovine na koji se odnose proračunski rezultati , to će se mjerenjem vibracija diska pri njegovoj rotaciji pojavljivati takve greške. Grešku izrade, moguće je otkloniti na najmodernijim uređajima za mjerenje vibracija gdje se vrtnjom diska pri malim brzinama automatski snimaju neravnine na površini diska te se kasnije takve greške izrade automatski kompenziraju pri snimanju mjerenja. U ovoj doktorskoj disertaciji greške izrade su snimljene prije početka izvođenja eksperimenta na disku 3 prilikom podešavanja horizontalnog i vertikalnog mjernog senzora. Proizvođač mjerne opreme naime sugerira da se senzori vibracija podese tako da je mjerni napon zazora između senzora i diska rotora približno jednaka -12 V budući se pritom dobivaju najtočniji rezultati mjerenja. To je katkada vrlo teško podesiti, naročito u oba smjera, te su dozvoljena odstupanja pri podešavanju. Ručnim zakretanjem rotora moguće je izmjeriti napon zazora u svakom od dvanaest položaja rotora i to u horizontalnom i vertikalnom smjeru. Nulti položaj, za svaki od smjerova, je dobiven kao srednja vrijednost maksimalne i minimalne vrijednosti voltaže

.

zazora. Na temelju poznate osjetljivosti mjernih senzora koja iznosi 8 mVμm⁻¹ izračunate su nadalje vrijednosti odstupanja od nultog položaja a rezultati su prikazani u tablici 8.2., što objašnjava razliku između mjerenih i izračunatih vrijednosti vibracijskih pomaka kod malih brzina vrtnje.

	Napon	zazora V	Odstupanje	μm
Kut"	Horizontalno	Vertikalno	Horizontalno	Vertikalno
0	-12.27	-11.44	-21.25	-65.625
30	-11.93	-11.52	-21.25	-55.625
60	-11.64	-11.61	-57.5	-44.375
90	-11.53	-11.88	-71.25	-10.625
120	-11.64	-12.20	-57.5	29.375
150	-11.75	-12.43	-43.75	58.125
180	-12.04	-12.49	-7.5	65.625
210	-12.32	-12.48	27.5	64.375
240	-12.57	-12.37	58.75	50.625
270	-12.67	-12.11	71.25	18.125
300	-12.60	-11.81	62.5	-19.375
330	-12.39	-11.57	36.25	-49.375
nulti položaj	-12.1	-11.965	±0.0	±0.0

Tab. 8.2 Snimljene vrijednosti greške izrade za 12 položaja na disku 3

9. Zaključak

Strojevi imaju pomične i nepomične elemente koji su podvrgnuti dinamičkim silama ili radnog medija ili ubrzanja, što može dovesti do oštećenja ili havarija. To se posebno odnosi na velike energetske strojeve (parne i plinske turbine, dizel motore, vodne turbine, generatore i sl.) kao i motore ugrađene u transportna sredstva (brodovi, vlakovi, zrakoplovi), čije havarije često izazivaju i velike ljudske žrtve.

S obzirom na ekonomsku situaciju u našoj zemlji, eksploatacija se strojeva produljuje i dulje je od njihovog pouzdanog vijeka trajanja, što povećava rizik od havarija. Stoga su vrlo bitna istraživanja čiji je cilj razrada osnova za procjenu vijeka trajanja komponenata strojeva, razvoj metoda proračuna izdržljivosti komponenata, podvrgnutih istovremenom djelovanju vibracija i velikih statičkih naprezanja, kao i provedba analiza dinamike rotordinamičkog sustava, utjecaja prijenosa vibracija s rotora na statora i temelj, te mehanizama samouzbudnih vibracija i nestabilnosti kod prisilnih vibracija.

Stoga problematika obrađivana u ovoj disertaciji, a sukladno tome i dobiveni rezultati, od interesa su kako u teorijskom tako i u praktičnom smislu. U teorijskom smislu novost predstavlja definiranje ležaja sa suhim trenjem kao konačnog elementa pri čemu se iznesena teorija može primijeniti i za modeliranje prihvatnog (pomoćnog) ležaja kod magnetskih ležajeva. Korištenjem Lagrangeove dinamike izvedene su za taj nekonzervativni dinamički sustav disipacijska funkcija za viskozni prigušivač, potencijalna i kinetička energija te nekonzervativna generalizirana sila dodira. Rotorski dio ležaja s suhim trenjem zadržava sve karakteristike krutog diska kao konačnog elementa (translacijska i rotacijska inercija, giroskopski efekt, linearne vanjske sile uslijed debalansa i težine) ali se njegovo opterećenje proširuje nelinearnom vanjskom silom, po principu akcije i reakcije, uslijed kontakta rotora i statora (ležaja s suhim trenjem). Primjenom Hamiltonovog principa za nekonzervativne sustave dobivene su jednadžbe gibanja ležaja sa suhim trenjem kao konačnog elementa. Kontaktna sila je modelirana prema Coulombovom modelu i sastoji se iz normalne sile dodira i sile trenja, koje su međusobno povezane koeficijentom trenja. Normalna sila dodira dobivena je kao umnožak fiktivne kontaktne krutosti i deformacije u kontaktnoj točki. Deformacija u kontaktnoj točki ovisi o pomacima rotorskog i statorskog dijela ležaja s suhim trenjem te o kutu dodira i izvor je geometrijske nelinearnosti u modelu. Predloženi model ležaja s suhim trenjem kao konačnog elementa također sadrži varijantu po kojoj normalna sila dodira ovisi i o umnošku fiktivnog dodirnog prigušenja i brzine rotorskog i statorskog dijela ležaja s suhim trenjem.

Na taj način predloženi konačno elementni model ležaja s suhim trenjem kompatibilan je s ostalim konačnim elementima već ranije korištenim za opisivanje rotordinamičkih modela. Diferencijalne jednadžbe gibanja tih konačnih elemenata u disertaciji su također izvedene primjenom Hamiltonovog principa. To se u prvom redu odnosi na ravninske i prostorne gredne rotordinamičke konačne elemente Bernouli – Eulerovog i Timoshenkovog tipa koji su u početku bili tretirani kao raspodijeljeni sustavi no, budući da je iznalaženje egzaktnog rješenja sustava diferencijalnih jednadžbi koje ih opisuju ograničeno samo na slučajeve jednostavnije geometrije nosača, oblike opterećenja i vrste oslanjanja, ukazala se je nužnost za korištenjem neke od aproksimativnih metoda njihovog rješavanja. Za razliku od standardnog grednog konačnog elementa gredni rotordinamički konačni element ne tretira probleme aksijalnih i torzijskih vibracija ali podržava formulaciju giroskopskog efekta, raspodijeljenog masenog debalansa i unutarnjeg prigušenja u materijalu. Slični efekti zastupljeni su i kod krutog diska kao konačnog elementa s time da su njegova inercijska svojstva dominantna u odnosu na elastična svojstva. Kod konačno elementnih modela kotrljajućih i kliznih

R Žigulić-Doktorska disertacija

Dinamika rotora u kliznim ležajevima

ležajeva zanemaruju se pak inercijska svojstva ležajeva u odnosu na njihove krutosti i prigušenja. Tim modelima vrlo je sličan i konačno elementni model kratke brtve kod kojega je ipak potrebno dodatno uzeti u obzir i inercijska svojstva translacije dok su kod modela dugih brtvi, zbog precesijskog gibanja rotora od velike važnosti i inercijska svojstva rotacije pa se model proširuje i rotacijskim stupnjevima slobode gibanja.

Budući se rotordinamičke strukture sastoje iz više manjih, zasebnih cjelina tzv. substruktura npr. rotor, ležaj, kućište itd., u disertaciji je posebna pažnja posvećena radu s substrukturama i formiranju globalnih jednadžbi gibanja cjelokupnog rotordinamičkog sustava. Rad s substrukturama vrlo je bitan ako se uzmu u obzir osnovne prednosti substrukturne tehnike a to su mogućnost odvojene dinamičke analize pojedinih dijelova rotordinamičkog sustava, mogućnost odvojenog modeliranja složenih sustava od specijalista za pojedine substrukture te mogućnost redukcije sustava jednadžbi gibanja već na nivou substruktura. Redukcija sustava jednadžbi gibanja rotordinamičkih sustava prijeko je potrebna kod nelinearnih proračuna složenijih rotordinamičkih sustava pri čemu se uobičajeno koristi kombinacija metode konačnih elemenata i fizikalno-modalnog modela čime se reducira broj stupnjeva slobode modela a samim time i smanjuje vrijeme korištenja CPUa računala.

Od numeričkih metoda u disertaciji su korištene procedure za rješavanje linearnih problema (problem vlastitih vrijednosti i vlastitih vektora, problem određivanja odziva zbog uzbude debalansom i problem određivanja odziva zbog proizvoljne vremenske uzbude) te procedure za rješavanje nelinearnih problema. I dok su problemi oko odabira procedura za određivanja vlastitih vrijednosti i vlastitih vektora te odziva zbog uzbude debalansom već teoretski prevladani u rotordinamici, pri čemu je problem sveden na odabir u sklopu korištenog programskog paketa već napisanog ili pisanje vlastitog rješavača, dileme oko odabira transformacijskog postupka ili direktnog vremensko integracijskog postupka, za rješavanje problema tranzijentnog odziva kod linearnog i nelinearnog modela rotora još su uvijek aktualne. Pri odabiru vremensko - integracijskog postupka presudilo je mišljenje, iznijeto u nekim radovima, da bi ovaj postupak mogao imati manje problema pri rješavanju nelinearnih sustava. Budući su se Newmarkova i Hilbert – Hughes – Taylorova α metoda (korištena za slučaj numeričkog prigušenja u modelu) pokazale izuzetno učinkovitima na svim test primjerima koji su bili računati za vrijeme izrade disertacije preporučuje se korištenje upravo tih metoda za rješavanje tranzijentnog odziva linearnog i nelinearnog modela rotora. Kod korištenja spomenutih numeričkih metoda će iskustvo konstruktora pri odabiru parametara bezuvjetne stabilnosti metoda, koraka vremenske integracije i kriterija konvergencije metoda biti od presudnog značaja za dobivanje zadovoljavajuće točnih rezultata.

Na osnovi je spomenutog numeričkog algoritma, temeljenog na metodi konačnih elemenata, izrađen izvorni programski paket ROTOR, pomoću kojeg je moguće izvoditi linearnu (program LINEAR) i nelinearnu (program NELINEAR) analizu fleksijskih vibracija rotordinamičkih sustava. Iako je program NELINEAR specijaliziran za nelinearne proračune rotordinamičkih sustava s ležajevima s suhim trenjem moguće ga je eventualno primijeniti i za nelinearne proračune rotora u kliznim ležajevima te u slučaju nelinearnog modeliranja brtvi, pogotovo u slučaju dugih brtvi. Programski paket je pokazao zavidne rezultate pri proračunu odziva rotora i statora za vrijeme kontakta i to u režimima zapinjanja uz klizanje te zapinjanja uz čisto kotrljanje ("whirl" i "whip" suhog trenja). Rad programa je testiran na šest primjera a dobiveni rezultati su pokazali odličnu podudarnost s u literaturi ranije objavljenim rezultatima. Također je u cilju provjere numerički dobivenih rezultata programom NELINEAR, izvršeno eksperimentalno određivanje vibracijskih karakteristika rotora za vrijeme kontakta pri zaustavljanju rotora. Usporedba eksperimentalnih i numeričkih rezultata pokazala je vrlo dobru podudarnost rezultata pri čemu je, na temelju izmjerenih pomaka na nekom od diskova rotora, bilo moguće, korištenjem programa NELINEAR, rekonstruirati

cjelokupnu "povijest" događanja u ležajevima s suhim trenjem za vrijeme zaustavljanja rotora. Stoga nije bilo potrebno vršiti eksperimentalna ispitivanja u svim čvornim točkama rotora a naročito ne na teško pristupačnim mjestima (ležajevi) te trošiti dodatna sredstva za nabavku još sofisticiranije mjerne opreme budući postojeći mjerni senzori ne mogu mjeriti vibracije na osovinama ispod određenog promjera.

Rezultati istraživanja trebali bi konstruktorima i proizvođačima energetskih i procesnih postrojenja (ALSTOM, Končar itd.), naročito prezentirani numerički model i pripadni programski paket, pružiti pouzdan aparat za analizu rotordinamičkih sustava kao i za modeliranje i dijagnosticiranje problema zapinjanja rotora o kućište i ležajeve kao planiranog ili neplaniranog poremećaja pri radu rotordinamičke opreme, te u sprečavanju s time povezanih eventualnih havarija.

Objavljivanjem ove disertacije preostalo je prostora i za daljnji teorijski i eksperimentalni rad na tretiranoj temi. To se u prvome redu odnosi na eksperimentalno praćenje fenomena "whirla" i "whipa" suhog trenja, budući to nije moglo biti ostvareno postojećim eksperimentalnim modelom, kao i na rad na još složenijem modelu koji bi uključivao istovremeni kontakt i u ležajevima s suhim trenjem i na nekom od diskova rotora. Teorijski i praktični model bi također mogli biti prošireni i na tzv. spiralne vibracije rotora uzrokovane prijelazom topline između rotora i statora.

134

R. Žigulić-Doktorska disertacija

Popis literature

- [1] Jeffcott, H.H.: Lateral Vibration of Loaded Shafts in the Neighbourhood of a Whirling Speed -TheEffect of Want of Balance, Philosophical Magazine, Series 6, 37, pp.304-314., 1919.
- [2] Vance, J. M.: Rotordynamics of Turbomachinery, John Wiley & Sons, Toronto, 1988.
- [3] Stodola, A .: Steam and Gas Turbines, McGraw-Hill, New York, 1927.
- [4] Green, R.: Gyroscopic Effects of the Critical Speeds of Flexible Rotors, Journal of Applied Mechanics, Vol 15, 1948., pp 369-376.,
- [5] Cokan, R.: Računalniška simulacija dinamičnega obnašanja rotorja, magisterij, Fakulteta za strojništvo univerze v Ljubljani, 1996, Ljubljana,
- [6] Dimentberg, F.: Flexural Vibrations of Rotating Shafts, Butterworths, London, 1961.,
- Brosens, P.J., Crandall, S.H.: Whirling of Unsymmetrical Rotors, Journal of Applied Mechanics, September 1961., pp 355-362.,
- [8] Ardayfio, D., Frohrib, D.A.: Vibration of an Asymmetrically Mounted Rotor with Gyroscopic Effects, Journal of Engineering for Industry, February 1976., pp 327-331., Paper No. 75 DET – 58
- [9] Muszynska, A.: Oil Whip of a Rotor Supported in a Poorly Lubricated Bearing, Bently Nevada, Orbit, 1998. pp. 4-8.
- [10] Gunter, E. J., Jr., Trumpler, P.R.: The Influence of Internal Friction on the Stability of High Speed Rotors With Anisotropic Supports, Journal of Engineering for Industry, 1969, pp.1105.-1113., Paper No. 69-Vibr-2,
- [11] Gasch, R.; Pfuetzner, H.: Rotordynamik, Springer-Verlag, Berlin/Heidelberg, 1975.,
- [12] Mueller, P. C., Schiehlen W.O.: Forced Linear Vibrations, International Centre for Mechanical Science, CISM, Udine, October 1973.
- [13] Kirk, R.G., Gunter, E.J.: The Effect of Support Flexibility and Damping on the Synchronous Response of a Single-Mass Flexible Rotor, Journal of Engineering for Industry, 1972, pg. 221.-226., Paper No. 71-Vibr-72,
- [14] Black, H.: The Stabilizing Capacity of Bearings for Flexible Rotors with Hysteresis, Journal of Engineering for Industry, 1976, pg. 87.-91.
- [15] Barett, L., Gunter, E., Allaire, P.: Optimum Bearing Support Damping for Unbalance Response and Stability of Rotating Machinery, Journal of Engineering for Power, 1978, 89-94,
- [16] Hassenpflug, H.L., Flack, R.D., Gunter E.J.: Influence of Acceleration on the Critical Speed of a Jeffcott Rotor, Journal of Engineering for Power, January 1981.; Vol. 103, pp. 108-113., Paper No. 80-GT-88.
- [17] Kraemer, E.: Analysis of Rotors in Bearings, Rotordynamics 2 Problems in Turbomachinery, CISM Course and Lectures No. 297, Udine, 1988.
- [18] Kelly, S. G.: Fundamentals of Mechanical Vibrations, McGraw Hill, New York, 1993.,
- [19] Craig, R. R.: Structural Dynamics, An Introduction to Computer Methods; John Wiley & Sons, New York, 1981.,
- [20] Barger, V.D., Olsson, M.G.: Classical Mechanics a Modern Perspective, McGraw Hill, New York, 1995.
- [21] Geradin, M., Rixen, D.: Mechanical Vibrations, Theory and Application to Structural Dynamics, John Wiley & Sons, London, 1997.
- [22] Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, London, 1950.
- [23] Broch, J.T.: Mechanical Vibrations and Shock Measurements, Bruel & Kjaer, Naerum, 1972.
- [24] Tondl, A., Springer, H.: Ein Beitrag zur Klassifizierung Rotorschwingungen und deren Ursachen, Proceedings, Schwingungen in rotierden Maschinen III, Viewig, 1995., pp.257-267.
- [25] Grissom, R.: Partial Rotor-to-Stator Rub Demonstration, NASA Conference Publication 2409, Proceedings of Symposium Instabilities in Rotating Machinery, Carson City, Nevada, 10-14. June 1985. pp. 427.- 430.
- [26] Szczygielski, W.M.: Dynamisches Verhalten eines schnell drehenden Rotors bei Anstreifvorgaengen, Zur Erlangung des Titels eines Doktors der Technischen Wissenschaften,

- [27] Yanabe, S., Kaneko, S., Fukushima, T., Kanemitsu, Y., Tomi, N., Sugiyama, K.: Rotor Vibration due to Collision with Annular Guard During Passage Through Critical Speed, Transaction JSME, Vol.60, No. 571, 1994, pp 21.-28.,
- [28] Liebich, R.: Rub Induced Non-Linear Vibrations Considering the Thermo-Elastic Effect, Proceedings of a fifth International Conference on Rotor Dynamics, Darmstadt, Germany, 1998., pp.802-815,
- [29] Gruber, J.: Anstreifen eines Dampfturbinenrotors, Proceedings, Schwingungen in rotierden Maschinen IV, Viewig, 1997., pp. 155-162.
- [30] Childs, D.W.: Turbomachinery Rotordynamics, Phenomena, Modeling, and Analysis, John Wiley & Sons, New York, 1993.
- [31] Ishii, T., Kirk, R.G.: Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop, Journal of Vibration and Acoustics, Vol. 118, April 1996., pp 154-163.
- [32] Markert, R., Wegener, G.: Dynamik von elastischen Rotoren in Fanglagern, Proceedings, Schwingungen in rotierden Maschinen III, Viewig, 1995., pp. 20-30.
- [33] Boas, R.P.: Invitation to Complex Analysis, Birkhauser mathematic series, McGraw Hill, New York, 1987.
- [34] Wegener, G., Markert R., Pothmann, K.: Steady-State-Analisys of a Multi-Disk or Continuos Rotor with one Retainer Bearing, Proceedings of a fifth International Conference on Rotor Dynamics, Darmstadt, Germany, 1998., pp. 816-828.
- [35] Abraham, D., Markert, P., Witfeld, H.: Experimentelle Untersuchungen zu aktiven und passiven Resonanzdurchlaufhilfen fuer extrem elastische Rotoren, VDI-Berichte, No. 695, 1988., pp.145-169.
- [36] Lawen, J.L; Flowers, G.T.: Interaction Dynamics Between Flexible Rotor and an Auxiliary Clearance Bearing, Journal of Vibration, and Acoustics, Vol.121,1999., pp.183.-189.
- [37] Choi, Y.S., Noah, S.T.: Nonlinear Steady-State Response of Rotor-Support System, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.109,1987., pp.255.-261.
- [38] Simon, U., Brommund, E.t: Periodische Bewegungen einer Pendelzentrifuge in einem mehreckigen Fanlager, Schwingungen in rotierden Maschinen IV, Viewig, pp.181-188.
- [39] Yanabe, S., Nishimura, T., Kaneko, S.: Backward Whirl of Unifor Vertical Rotating Shaft Supported by Unlubricated Sleeve Bearing, Proceedings of the 9. IFTOMM World Congress, Milano 1995., Vol. 2. pp. 1253.- 1256.
- [40] Den Hartog, J.P.; Mechanical Vibrations, McGrew-Hill Book Company, 1956; New York, pp. 238-247.
- [41] Crandall, S.H.: From Whirl to Whip in Rotordynamics, Proceedings of 3. International Conference on Rotordynamics, Lyon, 1990., pp. 19-24,
- [42] Ehrich, F.F., O'Connor, J.J: Stator Whirl With Rotors in Bearing Clearance, Journal of Engineering for Industry, 1967, pg. 381.- 390., Paper No. 66-WA/MD-8,
- [43] Lingener, A.: Experimental Investigation of Reverse Whirl of a Flexible Rotor, Proceedings of 3rd International Conference on Rotordynamics, Lyon, 1990., pp. 13-18,
- [44] Ehrich, F.F.: Identification and Avoidance of Instabilities and Self-Excited Vibrations in Rotating Machinery, Proceeding of third Seminar on Machinery Vibrations Boxborough, Massachusetts, September 18-20, 1979., pp.1-45.
- [45] Muszynska, A.: Whirl and Whip-Rotor/Bearing Stability Problems, Journal of Sound and Vibration, 1986, Vol. 110(3), 1986., pp.443-462,
- [46] Souza, A.F., Garg, V.K.: Advanced Dynamics, Modelling and Analysis, Prentice Hall International, New Yersey, 1984.,
- [47] Osgodd, W.F.: Mechanics, Dover Publications, New York, 1965.
- [48] Vance, J.M., Sitchin A.: Numerical Solution of Dynamical Systems by Direct Application of Hamilton's Principle, International Journal for Numerical Methods in Engineering, Vol.4, 1972., pp.207-216
- [49] Blanuša, D.: Viša matematika, Il dio, Školska knjiga Zagreb, 1980.
- [50] Sapunar, Z., Krpan, M.: Dinamika, Sveučilišna naklada Liber, Zagreb, 1980.
- [51] Kirk, R.G., Gunter, E.J.: Transient Response of Rotor-Bearing Systems, Journal of Engineering for Industry, 1974, pg. 682.- 693., Paper No. 73-Det-102,

- [52] Rašković, D.: Teorija oscilacija, Naučna knjiga, Beograd, 1965
- [53] Thomson, W.T.: Theory of Vibrations with Applications, George Allen&Unwin, London, 1981,
- [54] James, M.L., Smith, G.M., Wolford, J.C., Whaley P.W.: Vibration of Mechanical and Structural Systems, Harper & Row, Publishers, New york, 1989.
- [55] Burton, R.: Vibration and Impact, Addison-Wesley Publishing Company, Reading Massachusetts, 1958.
- [56] Lazan, B.J.: Damping of Materials and Members in Structural mechanics, Pergamon Press, 1968
- [57] Butković, M., Žigulić, R., Braut, S.: Damping of Compressor blade Model, 16th Danubia-Adria Symposium, September 29-October 2, 1999., Cluj-Napoca, pp.69-70.
- [58] Stegić, M.: Teorija vibracija linearnih diskretnih mehaničkih sustava, FSB Zagreb, 1996.
- [59] Chen, W.J.: Energy Analysis to the design of Rotor-Bearing Systems, Journal of Engineering for Gas Turbines and Power, Vol.119., April 1997., pp.411-417.
- [60] Kurepa, S.: Konačno dimenzionalni vektorski prostori i primjene, Tehnička knjiga Zagreb, 1990.
- [61] Alfirević, I.: Tenzorski račun, Inženjerski priručnik IP1, Školska knjiga Zagreb, 1996.
- [62] Kardenstuncer, H., Norie, D.H.: Finite Element Handbook, McGraw Hill, New York, 1987
- [63] Kompiš, V., Novak, P., Handrik, M.: Trefftz Polynomials in Reciprocity based FE Formulation,
- 3rd International Congress of Croatian Society of Mechanics, Cavtat, September 28.-30.,2000., pp.25-36.
- [64] Kamenarović, I.: Matematika III, Tehnički fakultet Rijeka, 1988.
- [65] Konstrenčić, Z.: Teorija elastičnosti, Školska knjiga Zagreb, 1982.
- [66] Eshleman, R.L., Eubanks, R.A.: On the Critical Speeds of a Continuous Rotor, Journal of Engineering for Industry, 1969, pg. 1180.- 1188., Paper No. 69-Vibr-52,
- [67] Gasch, R., Knothe K.: Strukturdynamik, Band 2, Kontinua und ihre Diskretisierung, Springer-Verlag Berlin, Heidelberg 1989.,
- [68] Mihanović, A.: Dinamika konstrukcija, Građevinski fakultet Sveučilišta u Splitu, 1995.
- [69] Davis, R., Hensell, R.D., Warburton, G.B.: A Timoshenko Beam Element, Journal of Sound and Vibration, Vol. 22(4), 1972., pp. 475.-487.
- [70] Chen, S.L., Geradin, M.: Finite Element Simulation of NON-Linear Transient Response Due to Rotor-Stator Contact, Engineering Computations, Vol. 14, No.6, 1997, pp.591.-603.
- [71] Lund, J.W.: Stability and damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings, Journal of Engineering for Industry, May 1974., pp.509.-517., Paper No. 73-Det-103.
- [72] Ehrich, F.F.; Handbook of Rotordynamics; 1992, McGraw-Hill, Inc.,
- [73] Pestel, E.C., Leckie, F.A.: Matrix Methods in Elastomechanics, McGraw-Hill Book Company, New York, 1963
- [74] Hinton, E., Owen, D.R.J.: An Introduction to Finite Element Computations, Pineridge Press Limited, Swansea, U.K., 1979.
- [75] Cook, R.D.: Finite Element modeling for Stress Analysis, John Wiley and Sons, New York, 1995.
- [76] Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko Beam Finite Elements, Journal of Sound and Vibrations, 1973., Vol. 31(3), pp. 315-330.
- [77] Nelson, D., McVaugh, J.M.; The Dynamics of Rotor-Bearing Systems Using Finite Elements, Journal of Engineering for Industry, May 1976, pp. 593.- 600., Paper No. 75-WA/DE-19,
- [78] Gasch, R.; Vibration of Large Turbo-Rotors in Fluid-Film Bearings on an Elastic Foundation, Journal of Sound and Vibration; pp. 53.-73., 1976.
- [79] Zorzi, E.S., Nelson, H.D.: Finite Element Simulation of Rotor-Bearing Systems With Internal Damping, Journal of Engineering for Power, January 1977, pp.71.-76., Paper No. 76-GT-89.
- [80] Jonušas, R.: Dynamics of a Rotor Rotating on Axially Tightened Rolling Bearings, Proceedings of Ninth World Congress on the Theory of Machines and Mechanisms, Politechnico di Milano, Italy, August 29.-September 2., 1995., pp. 1290.-1294.
- [81] Lim T.C., Singh R.: Vibration Transmission Through Rolling Element Bearings, Part I: Bearing Stiffness Formulation, Journal of Sound and Vibration, Vol. 139(2), 1990., pp.179-199.
- [82] Lim, T.C., Singh, R.: Vibration Transmission Through Rolling Element Bearings. Part II: System Studies, Journal of Sound and Vibration, Vol. 139(2), 1990., pp.201-225.
- [83] Muehlner, E., Dietl, P.: Vorgespannte Kugellager in flexiblen Strukturen, Schwingungen in Rotierden Maschinen IV, Universitaet GH Kassel, 1997.

- [84] Weber, D.: Ein Beitrag zur Berechnung der Biegeschwingungen rotirender Maschinen unter Berucksichtigung nichtlinearer fluidmechanischer Koppelmechanismen, Fortschr.-Ber. ,VDI Reihe 11 Nr. 183, Dusseldorf: VDI Verlag, 1993.
- [85] Someya, T.: Journal Bearing Databook, Springer-Verlag Berlin, Heidelberg, 1989.
- [86] Klumpp, R., Ein Beitrag zur Theorie von Kippsegmentlagern, Ph.D. thesis, Universitat Karlsruhe, Karlsruhe, 1975.
- [87] Butković, M., Žigulić, R., Braut, S.: Contibution to the Numerical Solving of the Reynolds Equation by the Finite Difference Method Using the Highly Convergent Iterative Methods, Proceedings of Tenth Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20.-24., 1999., pp.2783-2788.
- [88] Fan, X., Meng, H.: Study on the Hydrodynamic Lubrication of Dynamically Loaded Bearing by Multi-Grid Method, Proceedings of Tenth Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20.-24., 1999., pp.2507-2512.
- [89] Schaffrath, G.: Ein Vervahren zum Berechnen der vier Feder- und der vier Dampfungskoeffizienten von Radialgleitlagern, Forschung im Ingenieurwessen 35, Nr. 6, 1969, pp.184.-195.
- [90] Nordmann, R., Massmann, H.: Identification of Dynamic Coefficients of Annular Turbulent Seals, Proceedings of Rotordynamic Instability Problems in High-Performance Turbomachinery, NASA Conference Publication 2338, College Station, Texas, 1984., pp.295.-312.
- [91] Massmann, H., Nordmann, R.: Some New Results Concerning the Dynamic Behavior of Annular Turbulent Seals, Instability in Rotating Machinery, NASA Conference Publication 2409, Carson City, Nevada, June 10-14, 1985. pp.179.-194.
- [92] Diewald, W., Nordmann, R.: Dynamic Analysis of Centrifugal Pump Rotors with Fluid-Mechanical Interactions, Proceedings of ASME Design Technology Conferences-11th Biennial Conference on Mechanical Vibration and Noise, Vol. 2., Boston, Massachusets, September 27-30, 1987, pp.571-580.
- [93] Nordmann, R., Weber, D.: Dynamik Vertikaler Turbomaschinen mit Fluiddynamischen Koppelelementen, 1.Zwischenbericht ueber das Forschungvorhaben No. 136/8-1, Kaiserslautern, 1990.
- [94] Nordmann, R., Weber, D., Hilbrath, K., Meinel, A.: StudienArbeit 8613/90/S24, Arbeitsgruppe Maschinendynamik, Kaiserslautern 1990.
- [95] Nelson, H.D., Meacham, W.L.; Transient Analysis of Rotor-Bearing System Using Component Mode Syntesis, The Gas Turbine Conference & Products Show, 1981., pp. 1-7,
- [96] Glasgow, D.A., Nelson, H.D.; Stability Analysis of Rotor-Bearing Systems Using Component Mode Synthesis, Transactions of the ASME, Journal of Mechanical Design, 1979., pp.1.-8., Paper No. 79-DET-63.
- [97] Gasch, R., Knothe, K.; Strukturdynamik, Band 1, Diskrete Systeme, Springer-Verlag Berlin, Heidelberg 1987.,
- [98] Fung, T.C.: A Precise Time-Step Integration Method by Step-Response and Impulsive-Response Matrices for Dynamic Problems, International Journal for Numerical Methods in Engeneering, Vol. 40,1997., pp. 4501.-4527.
- [99] Holl, H.J.: Ein effizienter Algorithmus fuer nichtlineare Probleme der Strukturdynamik mit Anwendung in der Rotordynamik, Universitaettsverlag Rudolf Trauner, Linz, 1995.
- [100] Geradin, M.: A Classification and Discusion of Integration Operators for Transient Structural Response, AIAA 12th Aerospace Sciences Meeting, Paper 74-105, 1974.
- [101] Bathe, K.J.: Finite Element Procedures, Prentice Hall, New Yersey, 1996.
- [102] Geradin, M., Kill, N.: Nonlinear Dynamic Analysis of Flexible Rotor, 4th International Conference on Vibrations in Rotating Machinery, Report VA-50, Edinburgh, 1988., pp.1.-9.
- [103] Turkalj, G.: Nelinearna analiza stabilnosti tankostjenih grednih struktura, Doktorska disertacija, TF Rijeka, 2000.

-14

- [104] Wolfram, S.: Mathematica A system for Doing Mathematics by Computer, Addison-Wesley Publishing Company, Redwood City, 1991.
- [105] Smith, I.M.: Programming in Fortran 90, John Wiley, Chichester, 1995.
- [106] Smith, J.M., Griffiths, D.V.: Programming the Finite Element Method, John Wiley & Sons,

New York, 1998.

- [107] Cardinalli, R., Nordmann, R., Sperber, A.: Dynamic Simulation of Nonlinear Models of Hydroelectric Machinery, Proceedings of DYNAME Conference, Sao Paolo, 1991., pp.1.-15.
- [108] Weber, D., Cardinalli, R., Nordmann, R.: A contribution to the Dynamic Simulation of Nonlinear Rotating Machines with Fluid Dynamical Coupling Elements, Proceedings of the International Conference on ROTATING Machine Dynamics, Rotordynamics 92, Venice, 28th-30th April 1992., pp. 389.-397.
- [109] Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering, John Wiley & Sons, London, 1998.
- [110] Rades, M.: Mixed Precession Modes of Rotor-Bearing Systems, Schwingungen in rotierden Maschinen III, Viewig, 1995., pp. 153.-164.
- [111] Rades, M.: Use of Monophase Modal Vectors in Rotordynamics, Schwingungen in rotierden Maschinen IV, Viewig, 1997., pp. 105.-112.
- [112] ...: Vibroexpert CM-S40, Technische Dokumentation, Carl Schenck, Darmstadt
- [113] Elkholy, A. H., Elshakweer, A.: Experimental Analysis of Journal Bearings, Journal of Engineering for Gas Turbines and Power, Vol.117., 1995., pp.589.-592.,
- [114] Beatty, R.F.: Differentiating Rotor Response Due to Radial Rubbing, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.107, 1985., pp.151.-160.

Popis oznaka i simbola

[4][8][17]	matrice i vektori zanica problema vlastitih unitada zati i slaviti za
[A(b)][H, [A]]	La matrica polačanja, komponenta matrice polačanja
{A}	vektor masenog debalansa u globalnom k s
$\{A_{n}\}$ $\{a_{n}\}$	pomoćni vektori kod određivanja stacionarnog odziva pri kontoktu rotara i stata o
A	projekcija vibracijskog tijela na ravninu okomitu na pravog brzina (m ²), provšina (m ²)
ALA	konstante prigušenih precesijskih orbita
A	konstante riešenja slobodnih vibracija Bernoulli Eulerove grada
A.B.C.	koeficijenti sheme centralnih diferencija
A.B.C	konstante eliptične putanje (m)
<i>{a}</i>	vektor masenog debalansa u lokalnom k s
ay.ay	komponente vektora $\{a\}$ u globalnom koordinatnom sustavu
$a_{\rm x}, a_{\rm y}$	komponente vektora $\{a\}$ u lokalnom koordinatnom sustavu
aa.	komponente vektora $\{a\}$ u rotacijskom koordinatnom sustavu
- x 3 - y	in the second (d) a rotacijskom koordinatiom sustavu
a	amplituda kompleksnog zapisa vektora $\{a\}$
<i>a</i> , <i>b</i>	udaljenost diska od lijevog i desnog oslonca kod rotora s nesimetrično postavljenim
	diskom (m), poluosi eliptične putanje (m)
a	Routh-Hurwitzovi koeficijenti stabilnosti vibracijskog sustava
a_i, b_i, c_i, d_i	konstante funkcije oblika kubnog tipa
$a_{1}, a_{2}, a_{3}, a_{4}, c_{1}$	amplitudne konstante
<i>{B}</i>	vektor konstanti
B1B4	konstante Duncanovih funkcija
$B(\Omega), C(\Omega)$	amplituda vibracija Jeffcottovog rotora
B	širina kliznog ležaja (m)
<i>b</i>	omjer masenih momenata inercije
b_1, b_2, b_3, b_4, c_2	amplitudne konstante
$[c^{rea}], \{f^{rea}\}$	reducirana matrica prigušenja i reducirani vektor prigušenja
C_1, C_2, C_3, C_4	koeficijenti bezdimenzijskog oblika Reynoldsove jednadžbe
C1,C2,S1,S2	Duncanove funkcije
Cykl	tenzor elastičnosti
c,C	koeficijent viskoznog prigušenja (Nsm ⁻¹), koeficijent otpora fluidnog prigušenja
C_v, C_u	koeficijent vanjskog i unutarnjeg prigušenja Jeffcottovog rotora (Nsm ⁻¹)
Ce	koeficijent ekvivalentnog prigušenja (Nsm ⁻¹)
$C_{s_r} C_r$	koeficijent prigušenja statora i rotora (Nsm ⁻¹)
Cos	koeficijent prigušenja oslonca ležaja (Nsm ⁻¹)
CK	dodirno prigušenje (Nsm ⁻¹)
$c_{ij}, k_{ij}, b_{ij}, m_{ij}$	svezani koeficijenti prigušenja (Nsm ⁻¹) i krutosti (Nm ⁻¹), koeficijenti matrice točke
D DF	(Nm ⁻) te svezani koeficijenti matrice masa (kg)
D, D^{*}	disipacijska funkcija, disipacijska funkcija konačnog elementa
D_0, D_1, D_2	koeticijenti bezdimenzijske debljine uljnog filma (m)
d E E*	mjera utjecaja momenta inercije diska
E,E*	Youngov modul elastičnosti (Nm ⁻²), kompleksni Youngov modul elastičnosti (Nm ⁻²)
E_d, E_p, E_k	disipacijska, potencijalna i kinetička energija (J)

142	Dinamika rotora u kliznim ležajevima		R. Žigulić-Doktorska disertacija
Epunu, Epvan	unutarnja i vanjska potencijalna energija (J)	$[k^{''}], [m^{''}], [c^{''}]$	matrica krutosti, masa i prigušenja druge substrukture
E_{k0}, E_{k1}, E_{k2}	transportna, uzajamna i odnosna kinetička energija (J)	$[k_C^{e}]$	cirkulacijska matrica
E_{kl}, E_k^{e}	kinetička energija diska (J), kinetička energija konačnog elementa (J)	$[k^{red}], [m^{red}]$	reducane matrice krutosti i masa
e	baza prirodnog logaritma	$[k_{T}], [c_{T}]$	tangentna matrica krutosti i prigušenja
r	koeficijent restitucije	<i>{KR}</i>	vektor Krylovljevih funkcija
F , { G }	kompleksne amplitude naprednog i natražnog precesijskog gibanja	<i>{k}</i>	jedinični vektor u smjeru osi z pomičnog k.s.
Fku}, Fku	vektor opterećenja kugličnog elementa i njegove komponente (N)	k	krutost Jeffcottovog rotora, krutost opruge (Nm ⁻¹)
F_b	vektor opterećenja brtve	k*	kompleksna krutost (Nm ⁻¹)
F_c	vektor sile vanjskog viskoznog prigušenja Jeffcottovog rotora	ī	prosječna krutost Jeffcottovog rotora (Nm ⁻¹)
F_u	vektor sile unutarnjeg prigušenja Jeffcottovog rotora	ky.ky	komponente ukupne krutosti Jeffcottovog rotora (Nm ⁻¹)
F_k	vektor kontaktne sile	k _{an}	konstanta opruge (Nm ⁻¹)
$f_{1,\{g\}}$	kompleksne amplitude naprednog i natražnog precesijskog gibanja u pomičnom k.s.	k.	koeficijent krutosti statora (Nsm ⁻¹)
f_r , { f^e }	vektor rubnog opterećenja i vektor generalizirane sile konačnog elementa	k.	koeficijent krutosti rotora (Nsm ⁻¹)
f_{i}^{e} },{ f_{n}^{e} }	vektori linearne i nelinearne generalizirane sile konačnog elementa	k	koeficijent krutosti oslonca ležaja (Nm ⁻¹)
fi};	vektor linearne generalizirane sile u vremenskom trenutku t_i	k.	ekvivalentna krutost rotora u ležajevima s osloncima (Nm^{-1})
$f_{c}, \{f_{s}\}$	kosinusna i sinusna komponenta vektora linearnih sila	kv	dodirna krutost (Nm ⁻¹)
f_k , { f_c }, { f_{zap} }	vektor unutrašnjih elastičnih sila, unutrašnjih disipativnih i giroskopskih sila te vektor	$k_{i}k_{i}$	koeficijenti nelinearne sile opruge (Nm^{-1}) i (Nm^{-3})
	vanjske nelinearne sile kontakta	L.	Lagranžijan
Ferx, Ferr	komponente vektora sile unutarnjeg prigušenja u globalnom k.s.	1	dulijna Jeffcottovog rotora, dulijna opruge (m)
d. Ffp	siila prigušenja suhog trenja (N), sila fluidnog prigušenja (N)	la	duliina opruge u nedeformiranom staniu (m)
x.fr	komponente vektora vanjskog opterećenja u globalnom koordinatnom sustavu	$[m_r^e][m_p^e]$	matrica translacijskih i rotacijskih masa konačnog elementa
Ē., Ē.	komponente unutarnie elastične sile u globalnom koordinatnom sustavu	$[m_{\alpha}^{e}]$	matrica giroskopskih masa prostornog rotordinamičkog konačnog elementa
g_{i}^{g}	gustoća površinske sile i zadana gustoća površinske sile	M _z	komponenta vektora vanjskog momenta oko osi z (Nm)
o ^e }	vektor vaniskog opterećenja konačnog elementa	$\overline{M}_{Y}, \overline{M}_{Y}$	komponente unutarnjeg elastičnog momenta u globalnom koordinatnom sustavu
5.5	modul smika (Nm ⁻²)	M.M.	momenti savijanja oko osi r i v (rad)
	konstanta zemlijne sile teže (ms ⁻²)	m	masa (kg) red disinacijske funkcije masa no jedinici dulijne (kgm ⁻¹)
ผา	matrica uz vektor generaliziranih brvina rotordinamičkog sustava	<i>m. m. m.</i>	masa rotorskog i statorskog dijela leffcottovog rotora (kg) masa diska (kg)
	bezdimenziiska debliina ulinoa filma, statička bezdimenziiska debliina ulinoa filma	m, m,	masa k-te čestice iz sustava materijalnih čestica (kg)
, 11	omier krutosti oslonga ležaja i krutosti rotora, vremenski korak (s)	[M]	nomoćna matrica za prikaz svojstva antisimetričnosti matrice
n	iedinična matrica	{N} {N}	vektori normalnih sila dodira rotora i statora
1	jedinični velstori u omioru Eulorevili kutova	{n}.	vektor kosinusa kutova u i-toi čestici
i_X , $i_{Y'}$, i_Z	jedinichi vektori u smjeru Eulerovin kutova	N N	broi materijalnih čestica u sustavu materijalnih čestica, intenzitet normalna cila (NI)
	aksijalni moment inercije poprečnog presjeka (m [*])	NNTT	intenzitet sila $\{N\}$ $\{N\}$ $\{T\}$ $\{T\}$ $\{T\}$ (N)
	dijametralni moment inercije površine poprečnog presjeka (m [*])	$\frac{1}{7},\frac{1}{5},\frac{1}{5},\frac{1}{5}$	$\frac{1}{1}$
	impuls normalne sile (Ns)		prijenosna matrica i-tog polja i prijenosna matrica i-tog polja za ravninski problem i
	radijus inercije poprečnog presjeka (m)	1.1.25	slučaj prisilnih vibracija
(a. 1997) - 1	glavni maseni moment inercije oko promjera (kgm ²)	Ρ, π	bezdimenzijski tlak kliznog ležaja
J_p	aksijalni i polarni maseni moment inercije (kgm ²)	P_{i}	<i>i</i> -ta nekonzervativna sila (N)
$J_{y_2}J_z$	maseni momenti inercije oko osi lokalnog koordinatnog sustava x, y i z (kgm ²)	p_i	komponente spektralnog opterećenja
$_{\rm Z},\rm J_{\rm YZ}$	centrifugalni momenti inercije u nepomičnom k.s. (kgm ²)	<i>p</i> , <i>q</i>	zadano raspodijeljeno opterećenje: sile (Nm ⁻¹) i momenti (N)
$_z, J_{yz}$	centrifugalni momenti inercije u pomičnom k.s. (kgm ²)	$\{Q_c^e\},\{Q_s^e\}$	vektori kosinusne i sinusne komponente sile debalansa konačnog elementa
	imaginarna jedinica	$\{q^e\},\{\dot{q}^e\},\{\dot{q}^e\},\{\ddot{q}^e\}$	} vektor pomaka, brzina i ubrzanja konačnog elementa
1	matrica krutosti	$\{q'\},\{\dot{q}'\},\{\dot{q}'\},\{\ddot{q}'\}$	vektor pomaka, brzina i ubrzanja prve substrukture
$[X_Z], [K_{YZ}]$	matrice krutosti Jeffcottovog rotora za ravnine vibriranja X-Z i Y-Z	$\{q''\},\{\dot{q}''\},\{\dot{q}''\},\{\ddot{q}''\},\{\ddot{q}''\},\{\ddot{q}''\},\{\ddot{q}''\},\{\ddot{q}''\},\{\ddot{q}''\},\{\ddot{q}''\},\{\ddot{q}'''\},\{\ddot{q}'''\},\{\ddot{q}'''\},\{\ddot{q}'''\},\{\ddot{q}''''\},\{\ddot{q}''''\},\{\ddot{q}'''''\},\{\ddot{q}''''''''''''''''''''''''''''''''''''$	¹¹ } vektor pomaka, brzina i ubrzanja druge substrukture
$[],[m^e],[c^e]$	matrica krutosti, masa i prigušenja konačnog elementa	$\{a^0\}$ $\{f^I\}$ $\{f^{II}\}$	vektor pomaka nulte substrukture, vektori generaliziranih sila prve i druge substrukture
k'], [m'], [c']	matrica krutosti, masa i prigušenja prve substrukture	14 150 350 3	venter periodia nance substratiate, ventori generalizitatuti sita prve i utuge substruktu

143

- ----

144	Dinamika rotora u kliznim ležajevima		R. Zigulić
$\{q_R\}, \{q_G\}, \{q_S\}$ $\{q_c\}, \{q_s\}$	yektor reduciranih, glavnih i sporednih stupnjeva slobode gibanja kosinusna i sinusna komponenta vektora generaliziranih pomaka	$\{T_r\}, \{T_s\}$ T	vektori Coulombovih sila trenja period vibracija (s), intenzitet C
$\{\hat{q}\}$	vektor amplituda rješenja problema vlastitih vrijednosti rotordinamičkog sustava	$\{t\}$	jedinični vektor tangente u točk
{q},{q},{q}	}, vektor generaliziranih koordinata, brzina i ubrzanja u trenutku t,	1,1,	vrijeme (s)
$\{a\}/\{\ddot{a}\}^{j}$	<i>i</i> -ta iteracija vektora pomaka, brzine i ubrzanja u vremenskom trenutku <i>t</i> ,	$[U], [U_y]$	prijenosna matrica sustava i nje
$\overline{O},\overline{M}$	zadano vanisko opterećenie: smične sile (N) i momenti savijanja (Nm)	{ <i>u</i> }	vektor aproksimativnih rjesenja
0,0	sile debalansa u smjeru z i v osi (N)	14/3	nolie pomaka čestice elastičnos
Qax, Qay	smične sile u smjeru osi r i v (N)	$\{\overline{u}\}$	zadano polie pomaka elastičnos
$Q_{x}Q_{y}$	pooncena sila (N)	$\{u'\}\{u''\}$	vektor prve i druge derivacije p
a	koeficijent nesimetričnosti krutosti	(a), (a) n. 1/4	komponente pomaka materijaln
a1an	poopćene koordinate	11.	komponente vektora $\{u\}_{i}$ (m)
àà.	poopćene brzine	u,	parcijalna derivacija vektora u_i
ä ä	noonćena ubrzania	ů., ü.	komponente brzine i ubrzanja n
(P)	vektor položaja centra pomičnog koordinatnog sustava leffcottovog rotora		(ms ⁻²)
{R ₁ }	vektor homogenog dijela riešenja jednadžbe prigušenih prisilnih vibracija rotora	u,v,w	pomaci u smjeru osi x, y i z (m)
5 R \	vektor brzine centra nomičnog koordinatnog sustava Jeffcottovog rotora	$u_{c}, u_{s}, v_{c}, v_{s}$	sinusne i kosinusne komponent
1.1.1	verter bizine centre pointeneg koordinatiog sustative perfection of growing	{ v }	vektor brzine
{ <i>R</i> }	vektor brzine centra pomičnog koordinatnog sustava u pomičnom k.s.	v_{m}, v_{sn}	rotorova i statorova komponent
{ <i>R</i> }	vektor ubrzanja centra pomičnog koordinatnog sustava Jeffcottovog rotora	v_{rt}, v_{st}	rotorova i statorova komponent
R_{X}, R_{Y}, R_{Z}	komponente vektora položaja pomičnog koordinatnog sustava u nepomičnom k.s.	v'_m, v'_{sn}	rotorova i statorova komponent
$R_{\chi}, R_{\gamma}, R_{\chi}$	komponente vektora brzine pomičnog koordinatnog sustava u nepomičnom k.s.	v'_{rt}, v'_{st}	rotorova i statorova komponent
$\ddot{R}_x, \ddot{R}_r, \ddot{R}_z$	komponente vektora ubrzanja pomičnog koordinatnog sustava u nepomičnom k.s.	W	rad, energija deformacije (J)
{ <i>r</i> }	vektor položaja centra pomičnog koordinatnog sustava u pomičnom k.s.	W*	komplementarna energija defor
$\{r_r\}, \{r_s\}$	vektor položaja centara masa rotora i statora	W_{nk}	rad nekonzervativnih sila (J)
R	broj holonomnih ograničenja sustava materijalnih čestica, radijus osovine kliznog	$\{\overline{X}\}_i$	vektor zadanih tjelesnih sila u i-
	ležaja (m)	$\{x\}_i$	vektor Descartesovih koordinat
R_s	ostatak razvoja u Taylorov red	<i>X</i> , <i>Y</i> , <i>Z</i>	osi nepomičnog koordinatnog s
r,p	aproksimacijska rješenja pomaka u polju konačnog elementa u smjeru osi x i y	X_{ik}	komponente vanjskog opterećer
r", p", r", p"	vremenske derivacije i derivacije po varijablama prostora aproksimacija r i p	<i>x,y,z</i>	osi pomičnog koordinatnog sust
r_d, R_r	polumjer diska rotora (m)	x', y', z'	rotirajući koordinatni sustav
r_x, r_y	normalizirane vrijednosti komponenata R_x i R_y	x_i	komponente vektora $\{x\}_i$ (m)
Tk .	rješenje karakteristične jednadžbe	x_{ik}	koordinate materijalne čestice i
r_i, r_i'	ostatak vektora pomaka u trenutku I_i , ostatak j-te iteracije u vremenskom trenutku I_i	xā	amplituda pomaka prisilnih vib
[2] [2]	Jacobijeva tangentna matrica ukupna površina tijala pedeformirana konfiguracija (m^2)	V_0, V	volumen elastičnog tijela u defo
\$	Somerfeldov broi	{z}	vektor stanja Bernoulli-Eulerov
5.5	dio površine tijela na kojemu su zadani pomaci i povšinske sile (m ²)	$\{z_i\}^L, \{z_i\}^D$	vektor stanja s lijeve i desne stra
s ŝ	Laplaceova varijabla i normalizirana Laplaceova varijabla	$\{z_i'\},\{z^*\}_{\Omega}$	vektor stanja kod ravninskih pri
e	radijalna zračnost (m) put (m) pozicija karakterističnog poprečnog presieka unutar	Z	uzdužna os osovine Jeffcottovo
	THE REPORT OF THE		and the second se

R. Žigulić-Doktorska disertacija

145

rotora i statora Coulombove sile trenja ci dodira ezina podmatrica kod aproksimativnih metoda va u vremenskom trenutku I; tijela kao rezultat dinamičke deformacije tijela tijela. olja pomaka po prostornim koordinatama ne čestice iz sustava materijalnih čestica (m) $po x_i$ naterijalne čestice iz sustava materijalnih čestica (ms⁻¹), te poprečnih pomaka rotora (m) a brzine u smjeru normale prije kolizije(ms⁻¹) a brzine u smjeru tangente prije kolizije (ms⁻¹) a brzine u smjeru normale nakon kolizije(ms⁻¹) a brzine u smjeru tangente nakon kolizije (ms⁻¹) macije (J) -toj čestici a čestice nedeformiranog elastičnog tijela ustava nja materijalne čestice sustava materijalnih čestica (N) tava vezanog uz disk Jeffcottovog rotora z sustava materijalnih čestica racija (m) ormiranoj i nedeformiranoj konfiguraciji (m³) e grede, vektor stanja kod prijenosnih matrica ane i-te točke ijenosnih martica te za slučaj prisilnih vibracija rotora os rotacije diska Jeffcottovog rotora z koeficijent fluidnog prigušenja (kgm⁻¹s⁻³), parametar HHT α metode α kutovi savijanja oko osi x i y (rad) α, β α_{i},β_{i} parametri direktne višekoračne integracijske metode konstanta dviju najnižih vlastitih vrijednosti rotordinamičkog sustava α_l

- -

konačnog elementa (m)

transformacijska matrica

slučaj prisilnih vibracija

So,S

[T]

udaljenosti dvaju točaka elastičnog tijela prije i nakon deformacije (m)

 $[T_i], [T_i'], [T_i]_{\Omega}$ prijenosna matrica *i*-te točke te prijenosna matrica *i*-te točke za ravninski problem i za

146	Dinamika rotora u kliznim ležajevima
α', β', ά', Β'	vremenske derivacije i derivacije po varijablama prostora kutnih aproksimacija α i β
β_{x},β_{y},Φ	Eulerovi kutovi (rad)
$\dot{\beta}_{y}, \dot{\beta}_{y}, \dot{\Phi}$	brzine promjena Eulerovih kutova (rads ⁻¹)
Bu. Bu	bezdimenzijsko prigušenje, bezdimenzijsko prigušenje segmenta kliznog ležaja
B.Y	parametri povezani s tipom kvadraturne sheme
$\{\Gamma_{a}\},\{\Gamma_{b}\}$	podvektori matrice [<i>I</i> [*]]
y	kut kontakta kod zapinjanja (rad), konstanta strukturnog prigušenja
YsyYK	bezdimenzijska krutost statora i bezdimenzijska kontaktna krutost
$\gamma_{H}, \eta_{H}, \eta_{V}$	kut i koeficijent gubitaka histereznog prigušenja, koeficijent viskoznog prigušenja
Yik, Yik	bezdimenzijska krutost, bezdimenzijska krutost segmenta kliznog ležaja
(δ)	vektor deformacije u kontaktnoj točki
5	intenzitet vektora deformacije u kontaktnoj točki (m)
Ś	intenzitet vektora brzine deformacije u kontaktnoj točki (ms ⁻¹)
$\delta u_{ik}, \delta q_s, \delta W$	virtualni pomak, infinitezimalna promjena generalizirane koordinate, virtualni rad
8	matrica tenzora deformacije
Sij.	Green-Lagrangeov tenzor deformacije
$E_x, E_{xy}, E_{xz}, \dots E_z$	komponente matrice tenzora deformacije
1	bezdimenzijski koeficijent Timoshenkove grede u prijenosnoj matrici polja
5. Y. E. Y	parametri definiranja gibanja osovine u kliznom ležaju i njihove vremenske derivacije
E_q, E_r, E_w	kriterij norme pomaka, norme ostatka i rada neuravnoteženog opterećenja
5v, 5u, 5, 50s	omjer vanjskog, unutarnjeg, ukupnog i prigušenja oslonca ležaja Jeffcottovog rotora
Frs 5ss Ge	omjer prigušenja rotora, statora, ekvivalentni omjer prigušenja
5	aksijalni smjer kod kliznog ležaja
η, η_1	bezdimenzijski koeficijenti oslonca ležaja, omjer frekvencija
nr, ns	koeficijent gubitaka rotora i statora
71. n.	normalne koordinate povezane s vlastitim oblicima vibriranja ϕ_i i njihove vremenske
	derivacije
Tin	<i>i</i> -ta generalizirana koordinata razvezanog sustava u trenutku t _n
c	koeficijent redukcije poprečnog presjeka
l,σ,ω	vlastita vrijednost, omjer prigušenja, prigušena vlastita frekvencija
l,G	Lameove konstante
μ_s, μ_d	koeficijent trenja, statički i dinamički koeficijent trenja
,	omjer masa
	relativno ubrzanje rotora
iks Šik	komponente trenutnog položaja i trenutne brzine čestice iz sustava materijalnih čestica
2	gustoća fluida (kgm ⁻³), modul vlastite vrijednosti
न	matrica Kirchhoff-Trefftzovog tenzora naprezanja
σ_{ij}	Kirchhoff-Trefftzov tenzor naprezanja
$\sigma_x, \sigma_{xy}, \sigma_{xz}, \dots$	komponente matrice tenzora naprezanja
$\tilde{\sigma}, \tilde{\gamma}$	realni i imaginarni dio normalizirane Laplaceove varijable \hat{s}
r	bezdimenzijsko vrijeme, period vibracijskog ciklusa (s), vrijeme (s)
¢	funkcija površine reduciranog poprečnog presjeka zbog posmične deformacije

R. Žigulić-Doktorska disertacija

[Ø]	matrica transformacije između Descartesovih i prirodnih komponenata brzine
[<i>ϕ</i> *]	reducirana modalna matrica
ϕ	kut rotacije rotora (rad)
$\dot{\phi}, \Omega$	kutna brzina rotora (rads ⁻¹)
$\ddot{arphi},arepsilon$	kutno ubrzanje rotora (rads ⁻²)
ϕ, θ	kutovi definicije "whipa" "whirla" suhog trenja
φ,	vlastiti oblici vibriranja raspodijeljenog sustava
ϕ_m	faktor utjecaja i-tog vibracijskog moda na uzbudu u vremenskom trenutku t _n
$\varphi, \varphi_{s}, \phi, \overline{\varphi}$	kutovi definicije geometrije kliznog ležaja u radijalnom smjeru
φ*,ζ*	kut prelaska iz pozitivnog u negativni tlak (rad), bezdimenzijska širina ležaja
φ_{p}, φ_{k}	početni i krajnji kut kliznog ležaja (rad)
φ	fazni kut vlastite vrijednosti
$[\psi^e], [\Gamma^e]$	matrice funkcija oblika
Ψ	fazni kut (rad), kut rotacije Timoshenkove grede (rad), kut otklona elipse (rad)
ψ_i, ψ'_i	funkcije oblika (Hermiteovi polinomi) i njihove derivacije po koordinati z
$\Omega_{\rm s}$	granična brzina vrtnje pri prijelazu u nestabilnost (rads ⁻¹)
$\hat{\Omega}$	bezdimenzijska kutna brzina rotora
{ <i>w</i> }	vektor kutne brzine tijela koje izvodi sferno gibanje
ω	vlastita frekvencija precesije rotora (rads ⁻¹), kružna frekvencija vibracija (rads ⁻¹
ω_0	vlastita frekvencija za slučaj koncentrirane mase (rads ⁻¹)
ω_i	vlastite frekvencije vibriranja raspodijeljenog sustava
ŵ	bezdimenzijska vlastita frekvencija
$\widehat{\omega}_{_{-1c}}, \widehat{\omega}_{_{-2c}}$	bezdimenzijske kritične brzine natražnih precesija
$\widehat{\omega}_{1c}, \widehat{\omega}_{2c}$	bezdimenzijske kritične brzine naprednih precesija
ω_r, ω_s	vlastite frekvencije rotora i statora (rads ⁻¹)
ω*	granična vlastita frekvencija modalne kondenzacije (rads ⁻¹)
{ }	modul vektora
$\langle \rangle$	Foepplov symbol
d	diferencijal
f	funkcija
Δ	konačna razlika
δ	varijacija
cos, sin	trigonometrijske funkcije kosinusa i sinusa
cosh, sinh	hiperbolne funkcije kosinusa i sinusa
const.	konstantna vrijednost izraza
$\partial/\partial\eta$	parcijalna derivacija varijable po η

Dinamika rotora u kliznim ležajevima

2

3 9

9

11

12

12

13

15

16

20

20

20

21

22 22

22

22

22

23

23

24

25

26

28 29

30

31

32 32

33

39 45

45 49

50

51 57

57 62

66

Popis slika

SI. 2.1 Jeffcottov model fleksibilnog rotora
SI. 2.2. Sinhroni odziv Jeffcottovog modela rotora
SI. 2.3. Stodola-Greenov model rotora
SI. 2.4. Definicija Eulerovih kutova Stodola-Greenovog modela rotora
SI. 2.5. Utjecaj masenog momenta inercije diska na bezdimenzijske vlastite
frekvencije mirujućeg rotora
SI. 2.6. Vlastite frekvencije Stodola-Greenovog modela uz d=1/3
SI. 2.7. Gibanje kod naprednih i natražnih kritičnih brzina
SI. 2.8. Stodola-Greenov model s nesimetrično postavljenim diskom
SI. 2.9. Kaskadni dijagram [8]
SI. 2.10. Shematski prikaz unutarnjeg prigušenja rotora
Sl. 2.11. Model elastičnog rotora na elastičnim ležajevima
SI. 2.12. Tranzijentne pojave pri startanju rotora
Sl. 2.13. Tranzijentne pojave pri zaustavljanju rotora
Sl. 2.14. Model elastičnog njihala
SI. 2.14a Pomak elastičnog njihala u x smjeru u prvih 20 sekundi gibanja
SI. 2.14b Pomak elastičnog njihala u v smjeru u prvih 20 sekundi gibanja
SI. 2.14c Putanja elastičnog njihala u prvih 20 sekundi gibanja
SI.2.15. Vibracijski sustav s ukrućivanjem opruge
Sl. 2.16.a Amplitudni odziv sustava s ukrućivanjem opruge
Sl. 2.16.b Amplitudni odziv sustava s omekšavanjem opruge
Sl. 2.17. Model Jeffcottovog rotora s zračnošću s
SI.2.18. Model zapinjanja rotora prema teoriji kolizije
SI.2.19. Model zapinjanja rotora prema teoriji kontaktne sile
SI. 2.20 Definicija vektora deformacije $\{\delta\}$
SI. 2.21a i 2.21b utiecai parametara sustava na stacionarno ponašanie nelinearnog
modela rotora u kontaktu s statorom.
SI. 2.22. Utiecai mase rotora i statora pri kontaktu
SI. 2.23. Tranzijentni odziv rotora kod zapinjanja
SJ. 2.24. Natražna precesija
SI. 2.25. Određivanje područja whirla suhog trenja frekventnoj domeni
SI. 2.26. Prijelaz iz whirla u whip suhog trenja
SI. 2.27. Kaskadni dijagram za ulini whirl i whip [45]
SI. 3.1. Vibracijski sustav s transportnom, uzajamnom i odnosnom kinetičkom energijom.
SI. 3.2. Rotor u ležajevima s suhim trenjem
SI. 3.3. Ležaj s suhim trenjem
Sl. 4.1. Kontinuirani sustav
Sl. 4.2. Geometrija prostorne deformacije
SI. 4.3. Veza naprezanje – deformacije
SI. 4.4. Poprečne vibracije Bernoulli-Eulerove grede
SI. 4.5. Kinematičke pretpostavke Bernoulli-Eulerove grede
SI. 4.6. Kinematičke pretpostavke Timoshenkove grede
SI. 5.1. Tipični model rotora lančanog tipa

R. Žigulić - Doktorska disertacija	149
SI. 5.2. Pomaci i opterećenje u i-toj čvornoj točki	66
SI. 5.3. Ravninski rotordinamički gredni konačn element	00
SI. 5.4. Funkcije oblika (Hermiteovi polinomi) ravninskog rotordinamičkog	12
grednog konačnog elementa	73
SI. 5.5 Prostorni rotordinamički gredni konačni element	75
SI. 5.6. Konačni element krutog diska	80
SI, 5.7. Kuglični ležaj kao konačni element	83
Sl. 5.8. Geometrija višesegmentnog ležaja	84
Sl. 5.9. Konačno diferencijska mreža	85
SI. 5.10. Reynoldsov rubni uvjet	86
SI. 5.11. Raspodjela tlaka u limunskom ležaju	86
Sl. 5.12. Bezdimenzijske krutosti Ya.	00
Sl. 5.13. Bezdimenziiska prigušenia B.	07
SI. 5.14. Model brive kao konačnog elementa	8/
SI 5.15. Model ležaja s suhim traniam	88
SI 516 Rotordinamički model rotor lažaj kučište	89
SI 6.1 Kinematika stasionarree a kin	92
Si. 6.1. Rinematika stactonarnog oaziva	97
SI. 6.2. No stabilnosti Newmarkove metode	102
SI. 6.3. Newton-Raphsonov iteracijski postupak za rješavanje nelinearnih vibracija	
SI 7.1 Struktura programskog p. kata BOTOP	105
SI. 7.2. Struktura programskog riešenja nelinearnog tranzijantnog odzina programskog	108
NELINEAR.	100
SI. 7.3. Model uz primjer1	111
SI. 7.4. Orbite i fleksijski oblici pri ω =350.1 rads ⁻¹	112
Sl. 7.5. Orbite i fleksijski oblici pri ω =379.1 rads ⁻¹	112
Sl. 7.6 .Orbite i fleksijski oblici pri ω =384.0 rads ⁻¹	112
SI. 7.7. Orbite i fleksijski oblici pri ω =387.0 rads ⁻¹	112
SI. 7.8. Orbite i fleksijski oblici pri ω =397.7 rads ⁴	112
SI. 7.9. Orbite i fleksijski oblici pri $\omega = 1050.0 \text{ rads}^2$	112
SI. 7.10. Orbite i fleksijski oblici pri $\omega = 1780.0$ rads'	113
SI. 7.11. Orbite I fleksijski oblici pri $\omega = 1/5/.0$ rads	113
SI, 7.13. Model rotora – primier 5	113
SI. 7.14. Linearni model rotora – primier 5	115
SI. 7.15. Campbell-ov dijagram	115
Sl. 7.16. Proračunski odziv uzbude debalansom za 6. čvornu točku modela u frekventnoj	110
domeni 0-100 Hz, horizontalni smjer	117
SI. 7.17. Proračunski odziv uzbude debalansom za 6. čvornu točku modela u frekventnoj	2,2,6
domeni 0-100 Hz, vertikalni smjer	117
SI. 7.18. Prisilna forma vibriranja dobivena proračunom kod prve horizontalne vlastite	
frekvencije $f_{lh} = 30.9 \text{ Hz}$	118
SI. 7.19. Prisilna forma vibriranja dobivena proračunom kod prve vertikalne vlastite	
frekvencije $f_{1v} = 33.0 \text{ Hz}$ Sl. 7.20 Orbite 6. čvorne točke modela rotora pri frekvencijama: (a) $f_{1h} = 30.9 \text{ Hz}$,	118
(b) $f_{lv} = 33.0 \text{ Hz}$	118
SI. 7.21. Ivelinearni norizontalni odziv rotora u čvornoj točki 6	119
SI. 7.23 Nelinearna prisilna proračinska forma vibriranja badana kaj ma	120
frekvencije $f_{lh} = 29.4 Hz$	120
· · · · · · · · · · · · · · · · · · ·	120

- en:

Dinamika rotora u kliznim ležajevima

SI, 7.24 Nelinearna prisilna proračunska forma vibriranja kod prve vertik.	
$vlastite frekvencije f_{lh} = 32.5 Hz$	120
SI. 7.25. Nelinearni odziv u čvoru 6 pri prvoj horizontalnoj vlastitoj frekvenciji	121
Sl. 7.26. Nelinearni odziv u čvoru 6 pri prvoj vertikalnoj vlastitoj frekvenciji	121
SI. 7.27. a i b Odziv u čvoru 8 (rotorskí dio) pri prvoj horiz. (lijevo) i prvoj vertik.	
(desno) vlastitoj frekvenciji	121
Sl. 7.28. a i b Odziv u čvoru 8 (statorski dio) pri prvoj horiz. (lijevo) i prvoj vertik.	
(desno) vlastitoj frekvenciji	121
Sl. 7.29. a) Deformacija δ u frekventnom području 0-63 Hz	122
b) Deformacija δ u frekventnom području 28.16-37.14 Hz	122
c) Deformacija δ u frekventnom području 25.16-38.14 Hz	122
SI. 7.30 a) Kut kontakta y u u frekventnom području 0-63 Hz	122
SI. 7.30 b) Kut kontakta y u u frekventnom području 25.16-38.14 Hz	122
SI. 8.1. Ispitivani rotor sa mjernom opremom	125
SI. 8.2. Smještaj mjernih senzora i senzora brzine vrtnje	125
SI. 8.3. Mjerenje vibracija trećeg diska pri zaustavljanju rotora od 3600 do	
600 omin ⁻¹ , horizontalni smjer	126
SI. 8.4. Mjerenje vibracija trećeg diska pri zaustavljanju rotora od 3600 do	
600 omin ⁻¹ , vertikalni smjer	126
SI. 8.5 Kaskadni dijagram izmjeren na 3. disku rotora, horizontalni smjer	126

Popis tablica

Tab. 2.1. Parametri nelinearnog rotorskog sustava	26
Tab. 7.1. Geometrijska svojstva konačnih elemenata i diskova rotora	116
Tab. 7.2. Smještaj koncentriranih masa	116
Tab. 7.3. Kritične brzine vrtnje od 0 do 100 Hz	117
Tab. 8.1. Usporedba izračunatih i izmjerenih kritične brzine vrtnje	126
Tab. 8.2. Snimljene vrijednosti greške izrade za 12 položaja na disku 3	132

ŽIVOTOPIS

Roberto Žigulić rođen je 8. srpnja 1966. godine u Rijeci, Republika Hrvatska, gdje je pohađao osnovnu školu, a potom se upisuje u CZKUOIK, današnju Gimnaziju "Andrije Mohorovičića" u Rijeci, gdje 1985. godine završava matematičko-informatički smjer, te stječe zanimanje informatičar, struka elektrotehnička.

Po povratku s odsluženja vojne obveze, u jesen 1986. godine, započinje studij strojarstva na Tehničkom fakultetu Sveučilišta u Rijeci, koji okončava 26. veljače 1992. godine obranom diplomskog rada s temom *Projektiranje mosnog granika*, pod vodstvom mentora prof. dr. Zlatka Šverera, dipl. ing., číme stječe stručni naziv diplomiranog inženjera strojarstva.

Još kao student uključen je, u jesen 1991. godine, u akcije jedinica ZNG-a oko oslobađanja vojarni JNA (Šapjane), a od travnja 1992. učestvuje u akcijama 155. brigade HV u Gospiću i Divoselu, sve do njezina rasformiranja.

Dana 14. rujna 1992. godine zapošljava se u Brodogradilištu 3. maj u Rijeci kao pripravnik u RO Održavanje, gdje radi na konstrukciji dizalica i pripremi remonata hidrauličkih preša, te polaže stručni ispit za projektanta.

U fakultetskoj godini 1992/93. upisuje poslijediplomski studij Mehanika strojeva i konstrukcija, smjer Dinamika konstrukcija na Tehničkom fakultetu Sveučilišta u Rijeci, a od 01. rujna 1993. godine radi na istome kao asistent na Zavodu za tehničku mehaniku gdje je aktivno uključen u nastavnu, stručnu i znanstvenoistraživačku djelatnost Zavoda. Povjereno mu je održavanje auditornih vježbi iz kolegija Kinematika, Dinamika, Teorija oscilacija i Dinamika strojeva na sveučilišnim studijima strojarstva i brodogradnje te kolegija Dinamika strojeva i konstrukcija na sveučilišnom studiju elektrotehnike.

Magistarski rad pod nazivom *Analiza vibracija robota* uspješno je obranio 19. lipnja 1997. pred Povjerenstvom u sastavu: red. prof. dr sc. Josip Brnić, dipl. ing.(TF Rijeka), red. prof. dr. sc. Mirko Butković, dipl. ing. (mentor, TF Rijeka), red. prof. dr. sc. Ivo Alfirević, dipl. ing. (FSB Zagreb).

Bio je polaznik međunarodne ljetne škole mehanike IUTAM s temom *Friction and Instabilities* održane od 03. do 07. srpnja 2000. u Internacionalnom centru za mehaniku u Udinama, te korisnik županijske stipendije na Zavodu za mehatroniku na Technische HochSchule Darmstadt.

Kao istraživač bio je uključen u rad na znanstvenom projektu br. 2-06-049 Vibracije sustava s visokim statičkim opterećenjima sve do njegova gašenja a sada u svojstvu istraživača radi na znanstvenom projektu Mehanička sigurnost strojeva, br. 069-013, Ministarstva znanosti i tehnologije Republike Hrvatske, a pod vodstvom glavnog istraživača prof. dr. sc. Mirka Butkovića, dipl. ing.

Do sada je autor i koautor ukupno jedanaest znanstvenih radova te jednog fakultetskog udžbenika.

Aktivno se služi engleskim, a pasivno talijanskim i njemačkim jezikom. Oženjen je i otac jednog djeteta.

PODACI O AUTORU I DOKTORSKOJ DISERTACIJI

1. AUTOR

Ime i prezime: Datum i mjesto rođenja: Naziv fakulteta, studija i godina završetka dodiplomskog studija:

Naziv fakulteta, smjera i godina završetka poslijediplomskog studija:

Sadašnje zaposlenje:

2. DOKTORSKA DISERTACIJA

Naslov: Broj stranica, slika, tabela i bibliografskih podataka: Znanstveno polje i grana:

Voditelj rada: Fakultet na kojem je rad objavljen:

3. OBRANA I OCJENA

Datum prijave teme: Datum predaje rada: Datum prihvaćanja ocjene rada: Sastav Povjerenstva za ocjenu:

Datum obrane: Sastav Povjerenstva za obranu:

Datum promocije:

Roberto Žigulić 08.07.1966., Rijeka

Tehničkí fakultet Sveučilišta u Rijeci, strojarstvo, 1992.

Tehnički fakultet Sveučilišta u Rijeci, strojarstvo, Mehanika strojeva i konstrukcija,1997.

Tehnički fakultet Sveučilišta u Rijeci

Dinamika rotora u kliznim ležajevima

str. 151, sl.103, tab.6, Strojarstvo; opće strojarstvo (konstrukcije); Druge temeljne tehničke znanostite, hnička mehanika i mehanika fluida Red. prof. dr. sc. Mirko Butković, dipl. ing. Tehnički fakultet Sveučilišta u Rijeci

19.02.1999. 04.09.2001. 25.10.2001. red. prof. dr. sc. Ivo Alfirević, dipl. ing. red. prof. dr. sc. Mirko Butković, dipl. ing. red. prof. dr. sc. Josip Brnić, dipl. ing. prof. emeritus Mirko Krpan, dipl. ing.

09.11.2001. red. prof. dr. sc. Ivo Alfirević, dipl. ing. red. prof. dr. sc. Mirko Butković, dipl. ing. red. prof. dr. sc. Josip Brnić, dipl. ing. prof. emeritus Mirko Krpan, dipl. ing.

Oznaka: DD Tek. broj:

UDK 531.38:534-16:519.6:681.31(043)

DINAMIKA ROTORA U KLIZNIM LEŽAJEVIMA

Roberto Žigulić

Sveučilište u Rijeci Tehnički fakultet Hrvatska

Ključne riječi:

- dinamika rotora - nelinearne vibracije - zapinjanje - metoda konačnih elemenata - računarska simulacija - mjerenje vibracija

Sażetak:

U disertaciji je teorijski, numerički i eksperimentalno obrađen problem određivanja odziva fleksijskih vibracija linearnih i nelinearnih rotordinamičkih modela.

U teorijskom je dijelu naročita pažnja posvećena teoriji nestabilnosti kod prisilnih vibracija pri čemu su ove nestabilnosti karakterizirane nelinearnim prisilnim vibracijama. Vibracije su uobičajeno pobuđene debalansom a nelinearnost je geometrijskog karaktera. Istovremenim vibriranjem rotora i statora dolazi do njihovog kontakta pri čemu gibanje rotora po statoru može biti okarakterizirano ili kao kotrljanje uz klizanje ili kao čisto kotrljanje ("whirl" i "whip" suhog trenja) uz divergirajuću natražnu precesiju rotora.

Numerički je model temeljen na metodi konačnih elemenata. Korištenjem Hamiltonovog principa izvedene su jednadžbe gibanja svih potrebnih konačnih elemenata za modeliranje rotordinamičkog sustava (2-D i 3-D gredni rotordinamički konačni element, kruti disk, kotrljajući i klizni ležaj, brtve). Posebnu novost predstavlja definiranje ležaja s suhim trenjem kao konačnog elementa. Na osnovi je spomenutog numeričkog algoritma napisan programski paket ROTOR s kojim je moguće rješavati linearne i nelinearne rotordinamičke probleme u stacionarnim i nestacionarnim uvjetima a specijaliziran je za rotore koji se gibaju u ležajevima s suhim trenjem. Programski paket je testiran na šest primjera.

Eksperimentalni model je načinjen s ciljem usporedbe s rezultatima dobivenim numeričkim putem. Rezultati mjerenja, dobiveni pri zaustavljanju rotora, su dani u obliku amplituda vibracijskih pomaka, kaskadnih dijagrama i orbita.

Rad nije objavljen.

Mentor: Povjerenstvo za ocjenu:	red. prof. dr. sc. Mirko Butković, dipl.ing. red. prof. dr. sc. Ivo Alfirević, dipl. ing. red. prof. dr. sc. Mirko Butković, dipl. ing. red. prof. dr. sc. Josip Brnić, dipl.ing. prof. emeritus Mirko Krpan, dipl. ing.
Povjerenstvo za obranu:	red. prof. dr. sc. Ivo Alfirević, dipl. ing. red. prof. dr. sc. Mirko Butković, dipl. ing. red. prof. dr. sc. Josip Brnić, dipl.ing. prof. emeritus Mirko Krpan, dipl. ing.
Datum obrane: 09.11.2001.	Datum promocije:

Rad je pohranjen na Tehničkom fakultetu u Rijeci.

(151 stranica, 103 slika, 6 tabela, original na hrvatskom jeziku)

Code: DD No.

UDC 531.38:534-16:519.6:681.31(043)

DYNAMICS OF THE ROTOR IN THE JOURNAL BEARINGS

Roberto Zigulić

University of Rijeka Technical Faculty Croatia

Key words:

- Nonlinear Vibrations

- Rotordynamics

- Rubbing
- Finite Elements Method
- Computer Simulation
- Measurement of Vibrations

Summary:

In this thesis the problem of determination of the response for the linear and nonlinear flexural vibrations of the rotordynamic models is elaborated theoretically, numerically and experimentally.

In the theoretical part the particular attention is dedicated to the theory of instability of a forced vibrations. The vibrations are usually excited by the unbalance and nonlinearity has geometric nature. The simultaneous vibration of the rotor and stator results with contact. The motion of the rotor along the stator can be characterized either as a rolling with slip or a rolling without slip (dry friction "whirl" and "whip") with the increasing backward precession of the rotor.

The numerical model is based on the finite elements method. By using the Hamilton's principle the equations of motion of all finite elements necessary for the modeling of the rotordynamic systems (2-D and 3-D beam rotordynamic finite element, rigid disk, roller and journal bearing, seals) are derived. The particular novelty represents the definition of dry friction bearing as a finite element. On the basis of the mentioned numerical algorithm the program package *ROTOR* is written. This program can be used for solving a linear and nonlinear rotordynamic problems in stationary and nonstationary states and it is specialized for the rotors rotating in the dry friction bearings. The program package is tested on the six examples.

Experimental model is made for the purpose of comparison with the numerically obtained results. Measurements results obtained during the run down of the rotor are given in the form of vibrational displacements amplitudes, cascade diagrams and orbits.

.

This thesis has not been published.

Supervisor:	Prof. Mirko Butković, Dr. Sc., Mech. Eng.
Reviewers:	Prof. Ivo Alfirević, Dr. Sc., Mech. Eng.
	Prof. Mirko Butković, Dr. Sc., Mech. Eng.
	Prof. Josip Brnić, Dr. Sc., Mech. Eng.
	Prof. Emeritus Mirko Krpan, Nav.Arch.
Examiners:	Prof. Ivo Alfirević, Dr. Sc., Mech. Eng.
	Prof. Mirko Butković, Dr. Sc., Mech. Eng.
	Prof. Josip Brnić, Dr. Sc., Mech. Eng.
	Prof. Emeritus Mirko Krpan, Nav.Arch.
Oral examination: 09 11 2001	Degree conferred
orar examination: 09.111.2001.	Degree conterred.
This thesis is deposited at Technical Facu	Ity of the University of Rijeka.

(151 pages, 103 figures, 6 tables, original in Croatian)

dınamıka rotora nelinearne vibracıje zapinjanje metoda konačnih elemenata računarska simulacija mjerenje vibracija

Rijučne riječi:

UDK 531.38:534-16:519,618:681.31(043)

II Sveučilište u Rijeci Tehnički fakultet HRVATSKA

I Zigulić, R.

Dinamika rotora u kliznim ležajevima

DD

DD

30

1. Dynamics of the Rotor in Journal Bearings

I Žigulić R.

II University of Rijeka Technical Faculty CROATIA UDC 531.38:534-16:519.6:681.31(043)

Key words:

Rotordynamics Nonlinear Vibrations Rubbing Finite Elements Method Computer Simulation Measurement of Vibrations