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Abstract
In the present thesis a three-dimensional finite element model for non-linear dynamic analysis of

(1) seismic site and structure response and (2) soil-structure interaction with contact discontinu-

ity is proposed and discussed. Accordingly, two numerical studies are presented, each consisting

of a series of analyses of a coupled structure - foundation - soil system.

In the first study a series of numerical examples are presented which include modelling of a

reinforced concrete frame with a portion of the ground consisting of various horizontal layers

resting on rigid bedrock. The influence of the ground layer configurations on the structure

response due to seismic loads is investigated and discussed.

In the second study the influence of various parameters governing the structure response, with

emphasis on sliding and rocking of the structure, are investigated by assuming discontinuity in

the soil - foundation interface.

The spatial discretisation is performed by a combination of linear tetrahedral (ground) and

hexahedral (structure) finite elements. The time integration is carried out by explicit integration

using the leap-frog method. Total Lagrange formulation is adopted to account for large rotations

and large displacements (geometrical non-linearity). To account for cracking and damage of the

concrete, the frame structure is modelled by the microplane model (material non-linearity).

Damage and cracking phenomena are modelled within the concept of smeared cracks. Plasticity

model is used for the modelling the reinforcement and the ground adopting the Von Mises and

Drucker–Prager yield criteria, respectively. The usual continuum assumption when treating the

soil–foundation interface is replaced with a contact discontinuity approach in order to be able

to capture foundation sliding and/or uplifting and rocking (contact non-linearity). Coulomb

frictional model is adopted in the contact resolution.

The proposed finite element code demonstrate the possibilities of advanced numerical approaches

in simulation of complex engineering problems. Comparative analysis shows the importance of

the local site conditions and influence of material non-linearity in seismic structural design. With

the implemented microplane model, which is aimed to be used for fracture and damage analysis

of concrete, it is possible do assess the sustained structural damage. Furthermore, for extreme

scenarios with highly geometrically non-linear behaviour, as sliding and rocking, the proposed

model of foundation - soil interface is more adequate than usual continuum approach with spring

- dashpot elements and at the same time maintains a reasonable computational efficiency.

Keywords: finite elements; microplane model; contact mechanics; time history analysis; soil-

structure interaction; site-effects; seismic performance assessment





Sažetak
U ovoj dizertaciji predložen je i analiziran numerički prostorni model s konačnim elementima

za nelinearnu dinamičku analizu (1) odziva lokalnog tla i konstrukcije i (2) interakciju tla i

konstrukcije s kontaktnim diskontinuitetom. Sukladno tome, predstavljene su dvije numeričke

studije od kojih se svaka sastoji od niza proračuna sklopa konstrukcija - temelj - tlo.

U sklopu prve studije prikazan je niz numeričkih primjera koji uključuju modeliranje armirano

betonskog okvira s temeljnim tlom koje se sastoji od različitih horizontalnih slojeva položenih na

krutu osnovnu stijenu. Istražen je utjecaj konfiguracije slojeva tla na odziv konstrukcije uslijed

potresnog djelovanja.

U sklopu druge studije istražen je utjecaj raznih parametara na odziv konstrukcije, poglavito na

klizanje i rocking, pretpostavljajući diskontinuitet na kontaktu tla i temelja.

Prostorna diskretizacija izvršena je tetraedarskim (tlo) i heksaedarskim konačnim elementima

(konstrukcija). Integracija jednadžbe gibanja provedena je eksplicitno metodom leap-frog. Total

Lagrange formulacija je primijenjena kako bi se uzeli u obzir veliki pomaci i rotacije (geometrijska

nelinearnost). Pukotine i oštećenja u betonu konstrukcije modelirane su mikroravninskim mode-

lom unutar koncepta razmazanih pukotina (materijalna nelinearnost). Teorija plastičnosti prim-

ijenjena je za modeliranje armature i temeljnog tla koristeći Von Mises i Drucker-Prager kriterij

tečenja. Uobičajeni pristup modeliranja kao kontinuuma zamijenjen je kontaktnim diskontinu-

umom kako bi se moglo opisati klizanje temelja i/ili odizanje i rocking (kontaktna nelinearnost).

Pri rezoluciji kontakta korišten je Coulomb-ov model trenja.

Predloženi računalni kod s konačnim elementima pokazuje mogućnosti naprednih numeričkih

pristupa u simulaciji složenih inženjerskih problema. Komparativna analiza pokazuje važnost

lokalnih uvjeta tla i materijalne nelinearnosti u proračunu konstrukcija na potresna djelovanja. S

implementiranim mikroravnimskim modelom, koji je razvijen s ciljem opisivanja pojava pukotina

i oštećenja u betonu, moguće je ocijeniti posljedična strukturna oštećenja. Povrh toga, kad je

važna geometrijska nelinearnost, kao što je u slučaju pojave klizanja i rocking-a, predloženi model

veze sklopa temelj - tlo primjereniji je od klasičnog modela s oprugama.

Ključne riječi: konačni elementi; mikroravninski model; mehanika kontakta; analiza odziva

zapisima u vremenu; interakcija tla i konstrukcije; utjecaj lokalnih uvjeta; procjena seizmičkih

performansi
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Symbols

In the present Thesis the direct, matrix and full notations are preferred, whereas the
indicial notation is used only when the expressions are too complicated in other notations
or their representation is not feasible. As an example consider the dot product between
vectors a = (a1, a2, a3) and b = (b1, b2, b3) written in four different notations:

ai bi︸︷︷︸
indicial

= a.b︸︷︷︸
direct

= aTb︸︷︷︸
matrix

= a1b1 + a2b2 + a3b3︸ ︷︷ ︸
full

.

The following conventions are employed in the used notation regarding subscripts, su-
perscripts and indices. The left superscript indicates in which configuration the quantity
(body force, stress, strain, etc.) occurs while the left subscript indicates the config-
uration with respect to which the quantity is measured. For example the body force
components at time t + ∆t, measured in configuration 0, is: t+∆t

0f i, i = 1, 2, 3. In this
case the right subscript denotes the individual component of the vector. A comma in the
right subscript, on the other hand, denotes differentiation with respect to the coordinate
following, for example:

t+∆t
0ui,j =

∂ t+∆tui
∂ 0xj

.

The most frequent symbols are listed below.

Chapter 1

u̇ particle velocity
vs shear wave velocity

ρ material density

Chapter 2

b body (volume) forces
B strain-displacement matrix
C damping matrix

xxi
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D stress-strain matrix
E Young’s modulus
Fint internal forces
K stiffness matrix
J Jacobian matrix
Le characteristic element length
M mass matrix
M̂ effective mass matrix
N shape functions matrix
R vector of externally applied forces
R̂ effective load vector
t traction forces
ui displacement component
u displacement vector
u̇ velocity vector
ü acceleration vector
t time
v velocity
V volume

α mass coefficient
β stiffness coefficient
∆t time interval
ηi local coordinate
µi local coordinate
ν Poisson’s ratio
ξi local coordinate
ρ material density
ωmax largest element frequency
Ω element domain

Chapter 3

t
0BL linear strain-displacement matrix
C right Cauchy-Green deformation tensor
e1, e2, e3 material frame unit vectors
E1,E2,E3 spatial frame unit vectors
F deformation gradient
G displacement gradient
hi,j shape function derivatives
I identity matrix
J Jacobian of deformation
J Jacobian matrix



Symbols xxiii

lij displacement gradient components
P first Piola-Kirchhoff stress tensor
R Rotation tensor
S Cauchy stress
t
0Ŝ vector form of PK2
Sij second Piola-Kirchhoff stress tensor
u displacement vector
U displacement vector in the Eulerian description
v left stretch tensor
U right stretch tensor
V volume
x1, x2, x3 material frame axes
X1, X2, X3 spatial frame axes

εij Green-Lagrange strain tensor
ρ material density
σ̂ back-rotated Cauchy stress

Chapter 4

a normal to the yield surface
b normal to the plastic potential surface
c cohesion
CD,0 microplane secant deviatoric modulus
CM,0, CK,0 microplane secant shear moduli
CV,0 microplane secant volumetric modulus
De elastic stress-strain matrix
Dep elasto-plastic stress-strain matrix
eD deviatoric part of the microplane normal strain component
eK , eM shear strain microplane components
eN normal strain microplane component
eV volumetric part of the microplane normal strain component
ED,0 initial (undamaged) microplane deviatoric modulus
EM,0, EK,0 initial (undamaged) microplane shear moduli
EV,0 initial (undamaged) microplane volumetric modulus
f yield criterion
fvm vom Mises yield criterion
fdp Drucker-Prager yield criterion
g plastic potential
I1 first stress invariant
J2 second deviatoric stress invariant
k material parameter
k unit normal vector



Symbols xxiv

Kij projection tensor
m unit normal vector
Mij projection tensor
n unit normal vector
Nij projection tensor
R radius
sD deviatoric microplane stress component
sK , sM shear microplane stress component
sN normal microplane stress component
sV volumetric microplane stress component

α material parameter
∆ε strain increment
∆σe elastic stress increment
ε̇p plastic strain rate
ε̇t total strain rate
λ̇ plastic strain-rate multiplier
σ normal stress
σ̇ stress change
σ0 initial stress
σc uni-axial compression
σe trial elastic stress
σt uni-axial tension
τ shear stress
φ friction angle
ψ discontinuity function
ωD,0 material integrity parameter related to the microplane deviatoric strain
ωM,0, ωK,0 material integrity parameter related to the microplane shear strain
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Chapter 1.

Introduction

1.1. Motivation and problem definition

The subject of this thesis is the development of a three-dimensional finite element model

for non-linear dynamic analysis of seismic site and structure response with emphasis

on soil-structure interaction (SSI). Specifically, two types of problems are studied and

discussed:

1. numerical modelling of a reinforced concrete frame with a large portion of the

ground consisting of various horizontal layers resting on rigid bedrock on which

the input motion is applied, and

2. formulation of a more detailed SSI model in which the usual continuum assumption

when treating the soil-foundation interface is replaced with contact discontinuity

approach in order to be able to capture foundation sliding an/or uplifting (rocking).

Ground motions observed at a specific site generally depend on the type of the earthquake

fault mechanism, the way seismic waves propagate from their source to the top of the

bedrock and finally from the top of the bedrock to the surface. The rupture mechanism

and the propagation of seismic waves through the earth’s crust are difficult to model due

to their complex nature and a large amount of uncertainty involved. The problem of

ground response analysis then becomes one of the determining responses of the soil de-

posit to the motion of the bedrock immediately beneath it (Kramer, 2014). Soil deposits

act as filters to seismic waves changing the frequency content of motion by attenuating

amplitudes at certain frequencies and amplifying others. Amplification factors (the ratio

between a ground motion intensity measure at the surface and the bedrock level) can be

very high or even very small (de-amplification effect). Since soil conditions often vary

1
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considerably over short distances, levels of ground shaking can vary significantly within

a very small area. The site response mechanism is mainly governed by the principle

of conservation of elastic energy, which requires a constant energy flux (ρvsu̇2) through

ground from depth to the surface. Since the density ρ and shear wave velocity v generally

decrease approaching the ground surface, the particle velocity u̇ increases. Resonance

effects in the soil column can additionally contribute to site amplification. On the other

hand, de-amplification effects are generally caused by soil non-linear behaviour. All of

this is the focus of the first problem discussed.

Ground motions that are not influenced by the presence of structures are referred to as

free-field motions. When a structure founded on solid rock is subjected to an earthquake,

the very high stiffness of the rock constraints the rock motion to be very close to the

free field motion. Structures founded on rock are considered to be fixed-base structures

and the computation of their response is relatively simple. On the other hand, the same

structure would respond differently if founded on a soft soil deposit. Firstly, the inability

of the foundation to conform to the deformations of the free-field motion would cause the

motion of the base of the structure to deviate from the free-field motion. Secondly, the

dynamic response of the structure itself would induce deformation of the supporting soil.

This process, in which the response of the soil influences the motion of the structure

and the response of the structure influences the response of the soil, is referred to as

soil-structure interaction and is the main focus of the second problem.

In conclusion, one of the most important aspects of earthquake engineering is the evalu-

ation of the effect of local site conditions on strong ground motions along with adequate

treatment of SSI interaction. For many structures the SSI has little effect on the dy-

namic response. In other cases, however, its effect can be very important. Whether the

neglect of its effects is conservative or non-conservative depends on the specific prob-

lem at hand and must be evaluated on a case by case basis. Design parameters may

be obtained from building codes or may be developed on a site-specific analysis. For

a typical site, parameters based on site-specific analyses are likely to be more accurate

than code-based parameters and they are also likely to result in more economical design.

This is especially important in design of structures of common interest, such as bridges,

nuclear power plants and similar kind of structures.

1.2. State of the art

The influence of local site conditions on the intensity of ground shaking and earthquake

damage has been known for many years. Already in the early 19th century was noted
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that during an earthquake buildings situated on rock were much less affected by earth-

quakes than those whose foundation were on softer soils. Nevertheless, provisions that

specifically accounted for local site effects did not appear in building codes until the

1970s. A series of well documented catastrophic earthquakes in the second half of the

20th century (Caracas, Venezuela, 1967; San Fernando, California, 1971; Mexico City,

198; Loma Prieta, San Francisco Bay, 1989) incited first serious scientific researches of

these phenomena. Spectral accelerations recorded during these earthquakes in a rela-

tively small area differed by a factor 10 or more. The greatest damage were caused

by resonance effects which originated as a consequence of fundamental period of the

structure matching the characteristic period of the site. How large is the influence of a

particular site to the surface ground motions depends on the material properties, geom-

etry, topography and characteristic of the input motion. Structural response is a direct

consequence of the effects discussed above. In general, a complete structural response

analysis should model the structure and the site together with an adequate interface but

often the problem is split into two separate tasks.

There are many studies concerning site response assessment. Very often this complex

phenomenon is accounted for in a probabilistic way by empirical methods based on

observed data from previous earthquakes. A significant source of this data can be found

in the KiK-net databases (NIED, 2013; Aoi et al., 2004) which consist of numerous sets

of borehole and surface response records. The borehole data can be effectively used for

prescribing in-depth (bedrock) motions generating the free-field (outcrop) motion as a

result of specific site conditions. Many studies were conducted relaying on these (Héloïse

et al., 2012; Montalva, 2010; Singupalli, 2008) and similar data (Semblat et al., 2000).

On the other hand, non-linear numerical approach of site response is always challenging

and inevitably involves large models with considerable computational effort (Kontoe

et al., 2008; Lopez-Caballero et al., 2007; Pergalani et al., 2006; Smerzini et al., 2011;

Hashash and Park, 2002). Consequently, the problem is often reduced to two or even

one dimension like in Hashash and Park (2001); Phillips and Hashash (2009); Park and

Hashash (2004).

Numerical analysis of structural response alone, on the other hand, was widely studied

and several procedures for non-linear static static analysis of structures have been im-

plemented into the latest European and US seismic provisions. The N2 method (Fajfar,

2000; Kreslin and Fajfar, 2012) was implemented in European regulations (Eurocode

8, 2011) and the Capacity Spectrum Method (CSM) and the coefficient method, that

is Non-linear Static Procedure (NSP), where introduced in US provisions (FEMA-273,

1997; FEMA-356, 2000; FEMA-440, 2005). A detailed discussion of this procedures

can be found in Fajfar and Gašperšič (1996), Rozman and Fajfar (2009), Mitrović and
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Čaušević (2009) and Caušević and Mitrović (2011). Although more easy and straight

forward to implement, these procedures lack the rigorosity and versatility of the pure

dynamical time-history analysis, which with the constant rise of computational power,

becomes more and more approachable. Moreover, many studies (Gazetas and Mylonakis,

1998; Jeremić et al., 2009) indicate that use of free field motions as input for structural

only models might not be appropriate which inevitable leads to the conclusion that the

founding soil should be taken into account in a thorough seismic analysis of a structure.

Nevertheless, coupled analyses are rare because they require models large in size and com-

plexity (needing great computational power) and consequently are usually conducted

with various simplifications. An overview of the current approaches can be found in

(Dolšek et al., 2009). Ideally, a complete soil structure analysis (SSI) should involve de-

tailed coupled modelling of the structure, its foundation and the surrounding soil domain

as a whole. In the simplest models the soil is represented by distributed tensionless linear

spring-dashpot elements (Yim and Chopra, 1984; Houlsby et al., 2005) or by elastoplastic

Winkler models (Harden et al., 2005, 2006; Gerolymos and Gazetas, 2006; Harden and

Hutchinson, 2009). In more advanced models the soil is modelled as an elastic or inelas-

tic continuum (Gazetas et al., 2007; Jahromi, 2009; Sextos and Taskari, 2009; Jeremić

et al., 2009; Jeremić and Yang, 2002) with relatively simple structure models. Regardless

of the modelling of the SSI, a full dynamic time history analysis is usually replaced by

computationally more efficient quasi-dynamic approach like the pushover analysis (Sex-

tos and Taskari, 2009; Panagiotidou et al., 2012). Uplifting of the structure’s foundation

with consequential rocking was studied in various forms using one of the mentioned ap-

proaches (Apostolou et al., 2007; Gajan and Kutter, 2009; Panagiotidou et al., 2012).

Different base-isolations system were also studied in a similar way (Lu and Hsu, 2013;

Mahmoud et al., 2012).

All studies agree on the importance of SSI for structure response analysis and acknowl-

edge the need for even more detailed approaches. Since computer power is rapidly

becoming more available and affordable, use of advanced models in assessing seismic

performance of structures becomes more attractive. A viable path for a more advanced

representation of the SSI problem is modelling both the structure and the supporting soil

as an inelastic continuum and treating the interface as a strong discontinuity (contact

non-linearity).

1.3. Aim an objectives of the thesis

The aim of this thesis is to investigate the objectivity of the current principles used in

the design of structures for earthquake resistance and formulations of guidelines for their
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improvement with the purpose of constructing more reliable and economic structures. It

is also an intention to demonstrate the possibility of advanced numerical approaches in

simulation of complex engineering problems such as soil-structure interaction in case of

earthquake loading.

The primary objective of this thesis is the development and application of an original

computer program for three-dimensional non-linear dynamic analysis of site and structure

response with emphasis on SSI. The programme code was developed in Fortran program

language with PGI Visual Fortran (PGI, 2010). Femap (Siemens, 2009) was used as

a pre-processing tool and Para View (Kitware, 2012) as a post-processing tool. The

research is based on two numerical studies which include analyses of site and structure

response and a detailed representation of the soil-structure interaction, all with the aim

to accomplish the following intentions:

• reveal the impact of different soil layer configurations on frequency content and

amplitudes variations along a soil column from bedrock to the surface,

• compute site-specific spectra based on non-linear analysis and reveal the transfor-

mation of earthquake energy into other mechanical energies,

• assess the structural performance and perform damage analysis of a reinforced

concrete on a specific site,

• investigate foundation sliding and rocking using the contact discontinuity approach,

• improve the existing numerical algorithms and define further directions of devel-

opment of numerical models of soil structure interaction and site and structure

response.

First numerical study

This study consists of a series of numerical analyses which include modelling of a rein-

forced concrete frame with a large portion of the ground consisting of various horizontal

layers resting on rigid bedrock. The developed model does not need to assume the sur-

face ground motion. Instead, the surface ground motion is a result of the motion of the

bedrock influenced by the different ground layers above the bedrock and the structure

itself. The three-dimensional analysis is necessary when soil conditions vary spatially,

the input motion is not unidirectional and the response of a three-dimensional structure

is of interest. It is assumed that the response of a site is predominantly caused by hor-

izontal shear waves propagating vertically from the underlying bedrock. The bedrock

is assumed to be rigid acting as a fixed end boundary. The input motion is applied at

the bottom of the model (bedrock acting as a hypocentre) and the considered structure
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is located directly above (in the epicentre). As opposed to many substructure methods

(Jeremić et al., 2009; Lehmann, 2005; Spiliopoulos and Lykidis, 2006), this model is

based on the direct method in which the upper structure, foundations and the bounded

soil zone (so called near field) are modelled by the finite element method (FEM) using

solid elements. To account for cracking and damage of the concrete, the frame structure

is modelled by the microplane model. Damage and cracking phenomena are modelled

within the concept of smeared cracks. Plasticity model is used for the modelling the re-

inforcement and the ground adopting the Von Mises and Drucker–Prager yield criteria,

respectively. Non-linear soil behaviour becomes important for ground motions of higher

intensity and, generally, it can be expected that non-linear modelling would decrease the

demand on structure. The effect of the surrounding unbounded soil (so-called far-field)

is approximated by imposing Lysmer and Kuhlemeyer transmitting boundary conditions

along the near-field/far-field interface. The investigated examples encompass geometry

and phenomena in the range of several orders of magnitude: starting from the ground

(hundreds of meters), RC structure (m), steel reinforcement (cm) and, finally, cracking

of concrete (mm). Therefore, considering the inevitable large-size models and all the

incorporated non-linearities, a problem of computational efficiency merges naturally. Fi-

nally, the main objective of the study is to investigate the influence of the ground layer

configurations on the site and structure response with appropriate damage analysis of

the RC structure. Part of this study can be found in Mitrović et al. (2014).

Second numerical study

Typical seismic loads on structures with shallow foundation will usually induce significant

non-linear actions in the soil-structure interface. These non-linearities are geometrical

and material in nature. Geometrical non-linearities include sliding at the soil-foundation

interface and foundation uplifting from the supporting soil whereas material non-linearity

includes formation of bearing capacity failure surfaces, i.e. failure of soil. The structure

response can be heavily influenced by these three non-linearities. Therefore, a detailed

soil-structure interaction (SSI) model should explicitly account for the occurrence of

one or more mentioned non-linearities. In this sense a three-dimensional finite element

model for dynamic SSI analysis with contact discontinuity is proposed and discussed.

This model is based on the direct method in which the upper structure, foundations and

the bounded soil zone (so called near field) are modelled by the finite element method

(FEM) using three-dimensional (3D) solid finite elements. The usual continuum assump-

tion when treating the soil–foundation interface is replaced with a contact discontinuity

approach in order to be able to capture foundation sliding and/or uplifting (rocking).

Since the focus of this study is the SSI itself, rather that the influence of the site char-

acteristics on the changes of the ground motion, only a small portion of the ground was

modelled and the acceleration time history was applied on all nodes of the substructure
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in the horizontal direction leaving the vertical component free. To examine the influ-

ence of a contact discontinuity between the soil and the structure a series of numerical

analysis were performed by varying the ground motion intensity (by setting the PGA

of the selected accelerogram) and for different coefficients of friction µ. To emphasis

the contact discontinuity in the presented numerical examples the structure is founded

on a flat ground surface. Namely, in this case almost all of the seismic energy will be

transferred through the contact discontinuity by friction forces. A minor part of the

energy will be transferred by normal forces, i.e. by ground elevation. The emphasis is on

the physics of the soil – foundation system in the perspective of two important intercon-

nected non-linear mechanisms: (1) foundation sliding and/or detachment from the soil

with subsequent uplifting and (2) formation and accumulation of plastic deformations in

the ground below the footing. The interaction of these mechanisms can eventually lead

to collapse by dynamic instability (overturning) or collapse by soil failure. The objec-

tives are: to provide insight in the influence of various parameters governing sliding and

rocking of the structure and to give a visible and more realistic alternative to the classic

representations of the SSI founded such as Winkler and continuum models.

The results of this research are a contribution in development of more economic structures

with increased reliability for earthquake loadings and are a logical extension of published

works in this important field of engineering.

1.4. Thesis outline

The thesis consists of eight individual chapters which are summarized as follows.

Chapter 1. Introduction

In this chapter the studied problems are introduced and the state of the art is overviewed.

Next the aims and objectives are presented and finally the two numerical studies, which

make the central part of the thesis, are described.

Chapter 2. Numerical framework

Finite element method was used to perform the discretisation of the governing differential

equations in space and the finite difference method was used for the discretisation of time.

The first part of the second chapter is dedicated to the spatial discretisation which is

performed by three-dimensional solid elements: the linear tetrahedron and the tri-linear

hexahedron. The second part of the chapter is dedicated to the two finite difference

procedures used for time discterisation: the central difference method and the leap-frog

method.
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Chapter 3. Geometrical non-linearity

The discussed problems are defined in the framework of continuum mechanics. Further-

more, the very nature of the studied problems, especially the second one, requires a

geometrically non-linear description. For this reason a brief overview of continuum me-

chanics and finite strain theory is given followed by an description of the total Lagrange

formulation which allows modelling of large rotations and displacements.

Chapter 4. Material non-linearity

A fully non-linear analysis, as is suggested by the title of the Thesis, has to include non-

linear descriptions of the materials. In the first numerical study the structure (reinforced

concrete frame) and the ground (rock masses) are analysed with appropriated constitutive

models: microplane for the concrete and plasticity for the reinforcement and the ground.

In the second numerical study, where the emphasis is on the SSI, the ground is modelled

the same way but the structure is treated as linear elastic. Accordingly, this chapter

gives a theoretical overview of these models along with different computational aspects

and the numerical implementation.

Chapter 5. Contact non-linearity

The second numerical study is focused on the SSI assuming a discontinuity in the soil-

foundation interface which is based on the principles of contact mechanics. The first part

of the chapter is dedicated to the global and local detection strategies and forming of

contact elements. The second part is dedicated to the contact resolution which is based

on forward incremental Lagrangian multipliers method and executed by Gauss-Seidel

iteration strategy. Additionally, the adopted Coulomb frictional model is presented and

discussed.

Chapter 6. Computer program structure and computational aspects

The primary objective of this thesis was the development of an original computer program

code for three-dimensional non-linear dynamic analysis of site and structure response

with emphasis on SSI. The program code was developed in Fortran language and this

chapter presents its algorithmic structure. The implementation of all important concepts

and procedures introduced in the previous four chapters is explained. Finally, different

computational aspects, such as memory and time requirements are discussed.

Chapter 7. Numerical studies

This chapter presents in detail two numerical studies preformed by the dedicated program

introduced in the previous chapter. The studies are the central part of the Thesis and

include analyses of site and structure response with a detailed representation of the soil-

structure interaction. Based on the parameter analyses performed a series of conclusions

are drawn.
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Chapter 8. Summary and conclusions

The last chapter includes a summary of the entire Thesis followed by conclusions and

directions for future work. Conclusions are given separately for both numerical studies

along with an overall critical appraisal.





Chapter 2.

Numerical framework

The presented numerical analyses are based on principles of continuum and contact

mechanics and irreversible thermodynamics. The real physical domain of the studied

problems with an infinite number of degrees of freedom is discretisied with an approxi-

mated domain with a finite number degrees of freedom. This discretisation is performed

according to the finite element method. The adopted finite elements, the linear tetra-

hedron and the trilinear hexahedron, are introduced in Section 2.1. The time period in

which the studied events occur, also has to be discretisied. The continuous time line is

replaced by a set of points (finite number of time increments). At these discrete points

the governing equations have to be satisfied. The time integration of the dynamic equi-

librium equation is performed with the finite difference method which is introduced in

Section 2.2.

2.1. Spatial discretisation

Spatial discretisation involves the subdivision of the physical domain Ω bounded by Γ into

a finite number of sub-domains Ωe, i.e. finite elements (Figure 2.1.). This discretisation

is performed by linear tetrahedral and trilinear hexahedral elements (Zienkiewicz and

Taylor, 2005, 2000; Belytschko et al., 2013; Bathe, 1996).

2.1.1. Linear tetrahedral elements

The linear tetrahedron element consists of four nodes, six corners and four faces. Figure

2.2.(a) shows a typical four-node tetrahedron. Its geometry is fully defined by giving

the location of the four corner nodes with the respect to the local reference coordinate

11
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Γel 
Ωel Ω 

Γ 

PHYSICAL DOMAIN DISCRETISED DOMAIN 

Figure 2.1.: Approximation of a real physical domain by finite number of sub-domains
(finite elements).

system (x, y, z):

xi, yi, zi (i = 1, 2, 3, 4). (2.1.)

The numbering convention is given in Figure 2.2.(b) which assures that the volume will

 

1 (x1, y1, z1) 3 (x4, y4, z4) 

4 (x4, y4, z4) 

2 (x4, y4, z4) 

3 2 

1 

x y 

z 
(b) (a) 

Figure 2.2.: (a) The linear tetrahedron element (4-node tetrahedron) and (b) node
numbering convention - face 1-2-3 as seen from node 4.

be a positive when calculated in the following way:

V =
1

6
det


1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 . (2.2.)

To simplify the geometrical description of tetrahedral elements a set of local coordinates

ζ1, ζ2, ζ3, ζ4 is introduced (see Figure 2.3.). The value of ζi is one at corner i, zero at the

other three corners which make the opposite face, and varies linearly in between. The

sum of the four coordinates is equal to one:

ζ1 + ζ2 + ζ3 + ζ4 = 1. (2.3.)



2.1. Spatial discretisation 13

 4 

(b) (a) 

1 

2 

3 

P (ζ1, ζ2, ζ3, ζ4) 

4 

1 3 

2 

Figure 2.3.: Natural coordinates of the tetrahedron.

Any linear function F (x, y, z), that has values Fi(i = 1, 2, 3, 4) at the corners may be

interpolated in terms of the tetrahedron coordinates as:

F (ζ1, ζ2, ζ3, ζ4) = F1ζ1 + F2ζ2 + F3ζ3 + F4ζ4 = Fiζi. (2.4.)

The geometric definition of the tetrahedron element is then obtained by applying (2.4.)

to x, y and z, and appending the sum of coordinates constraint (2.3.) which gives the

the relationship between the global rectangular coordinates and natural coordinates:
1

x

y

z

 =


1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4




ζ1

ζ2

ζ3

ζ4

 . (2.5.)

The natural coordinates can be calculated from the given global rectangular coordinates

by inverting the previous relation, wich will result in:

ζi(x, y, z) =
1

6V
(αi + xβi + yγi + zδi) where i = 1, 2, 3, 4. (2.6.)

The values of α1, β1, γ1 and δ1, can be calculated as shown in equation (2.7.). The other

are obtained by cyclic permutations of the index i.

α1 =

∣∣∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣∣ ; β1 = −

∣∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣ ; γ1 = −

∣∣∣∣∣∣∣∣
x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣∣∣ ; δ1 = −

∣∣∣∣∣∣∣∣
x2 y2 1

x3 y3 1

x4 y4 1

∣∣∣∣∣∣∣∣ (2.7.)
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The displacement field over the tetrahedron element is defined by three components

ux, uy, uz which are linearly interpolated over the element from nodal values:


ux

uy

uz

 =


ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4

uz1 uz2 uz3 uz4



ζ1

ζ2

ζ3

ζ4

 . (2.8.)

Combining this with the geometric definition (2.5.) gives the isoparametric definition of

the 4-node tetrahedron element which simply means that the geometrical (coordinates)

and mechanical (displacement) data are interpolated through the element domain with

the same interpolation functions:

1

x

y

z

ux

uy

uz


=



1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4

uz1 uz2 uz3 uz4




ζ1

ζ2

ζ3

ζ4

 . (2.9.)

Every node of a tetrahedron element has three displacement components which gives

twelve independent displacement components per element in total. The displacement

vector can be written in the following way:

uel =
[
ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4

]T
. (2.10.)

The displacement field u can be related to the node displacement uel by a 3 × 12 matrix

of shape functions denoted as N.

u = N uel (2.11.)

For component-wise node displacement ordering, matrix N has the following form:

N =


N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

 , (2.12.)

in which the functions Ni are given by:

N(x, y, z) =
1

6V
(αi + xβi + yγi + zδi) where i = 1, 2, 3, 4. (2.13.)

Equations (2.13.) and (2.6.) shows that the shape functions Ni are equal to the functions
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ζi. Accordingly, the equation (2.9.) can be rewritten in the following form, restating the

isoparametric property of the linear tetrahedron element:

1

x

y

z

ux

uy

uz


=



1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4

uz1 uz2 uz3 uz4




N1

N2

N3

N4

 . (2.14.)

From equations (2.5.) and (2.13.) can easily derived the following relations that connect

partial derivatives of Cartesian and natural coordinates.

∂x

∂ξi
= x1,

∂y

∂ξi
= y1,

∂z

∂ξi
= z1, i = 1, 2, 3, 4 (2.15.)

∂ξi
∂x

=
1

6V
βi,

∂ξi
∂y

=
1

6V
γi,

∂ξi
∂z

=
1

6V
δi, i = 1, 2, 3, 4 (2.16.)

Partial derivatives of a function F (ξ1, ξ2, ξ3, ξ4) with respect to Cartesian coordinates

follow from (2.16.) and the chain rule:

∂F

∂x
=
∂F

∂ξ1

∂ξi
∂x

=
1

6V

(
∂F

∂ξ1
β1 +

∂F

∂ξ2
β2 +

∂F

∂ξ3
β3 +

∂F

∂ξ4
β4

)
=

βi
6V

∂F

∂ξi

∂F

∂y
=
∂F

∂ξ1

∂ξi
∂y

=
1

6V

(
∂F

∂ξ1
γ1 +

∂F

∂ξ2
γ2 +

∂F

∂ξ3
γ3 +

∂F

∂ξ4
γ4

)
=

γi
6V

∂F

∂ξi

∂F

∂z
=
∂F

∂ξ1

∂ξi
∂z

=
1

6V

(
∂F

∂ξ1
δ1 +

∂F

∂ξ2
δ2 +

∂F

∂ξ3
δ3 +

∂F

∂ξ4
δ4

)
=

δi
6V

∂F

∂ξi

. (2.17.)

In (2.17.) summation convention over i = 1, 2, 3, 4 applies to the indexed expressions.

2.1.2. Trilinear hexahedral elements

The trilinear hexahedron element, also known in literature as brick, is topologically

equivalent to a cube. It has eight corners, twelve edges or sides, and six faces. Figure

(2.4.) shows a eight-node hexahedron in the global coordinate system (x, y, z) together

with the axes of the natural coordinates (ξ, η, µ).

The natural coordinates (ξ, η, µ) vary from −1 on one face to +1 on the opposite face,

taking the zero value on the median face. The values of the natural coordinates of the

corners are given in Table (2.1.). The local numbering rule of the nodes is shown in

Figure (2.4.). First, a starting face and a starting node on that face has to be chosen
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Figure 2.4.: The eight-node hexahedron in the Cartesian coordinate system and in
the natural coordinate system in which becomes a cube.

Table 2.1.: Values of the natural coordinates at the corner of a hexahedral element

node ξ η µ

1 −1 −1 −1
2 +1 −1 −1
3 −1 +1 −1
5 −1 −1 +1
6 +1 −1 +1
7 +1 +1 +1
8 −1 +1 +1

and is given number 1. The other three nodes on the starting face are numbered 2, 3

and 4 in a anticlockwise manner while looking the starting face from the opposite one.

The nodes on the opposite face are then numbered 5, 6, 7, 8 and are directly opposite to

1, 2, 3, 4. This rule guarantees a positive volume, or more precisely, a positive Jacobian

determinant at every point.

The hexahedral element is defined by the equation (2.18.), analogue to (2.14.) for the

tetrahedral element:



1

x

y

z

ux

uy

uz


=



1 1 1 1 1 1 1 1

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

z1 z2 z3 z4 z5 z6 z7 z8

ux1 ux2 ux3 ux4 ux5 ux6 ux7 ux7

uy1 uy2 uy3 uy4 uy5 uy6 uy7 uy8

uz1 uz2 uz3 uz4 uz5 uz6 uz7 uz8





N1

N2

N3

N4

N5

N6

N7

N8


. (2.18.)



2.1. Spatial discretisation 17

The shape functions N are:

N1 = 1
8(1− ξ)(1− η)(1− µ), N2 = 1

8(1 + ξ)(1− η)(1− µ),

N3 = 1
8(1 + ξ)(1 + η)(1− µ), N4 = 1

8(1− ξ)(1 + η)(1− µ),

N5 = 1
8(1− ξ)(1− η)(1 + µ), N6 = 1

8(1 + ξ)(1− η)(1 + µ),

N7 = 1
8(1 + ξ)(1 + η)(1 + µ), N8 = 1

8(1− ξ)(1 + η)(1 + µ).

(2.19.)

The equations 2.19. can be summarized as:

Ni = 1
8(1 + ξξi)(1 + ηηi)(1 + µµi) (2.20.)

where ξi, ηi and µi denote the coordinates of the ith node as is shown in table (2.1.).

The derivates of the shape functions are then given by the usual chain rule formulas:

∂Ni

∂x
=
∂Ni

∂ξ

∂ξ

∂x
+
∂Ni

∂η

∂η

∂x
+
∂Ni

∂µ

∂µ

∂x
,

∂Ni

∂y
=
∂Ni

∂ξ

∂ξ

∂y
+
∂Ni

∂η

∂η

∂y
+
∂Ni

∂µ

∂µ

∂y
,

∂Ni

∂z
=
∂Ni

∂ξ

∂ξ

∂z
+
∂Ni

∂η

∂η

∂z
+
∂Ni

∂µ

∂µ

∂z
.

(2.21.)

In matrix form: 

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z


=



∂ξ

∂x

∂η

∂x

∂µ

∂x

∂ξ

∂y

∂η

∂y

∂µ

∂y

∂ξ

∂z

∂η

∂z

∂µ

∂z





∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂µ


. (2.22.)

The 3 × 3 matrix in (2.22.) is the inverse of the Jacobian matrix J−1 of (x, y, z) with

respect to (ξ, η, µ). The Jacobian matrix J, or simply the Jacobian, is then:

J =
∂(x, y, z)

∂(ξ, η, µ)
=



∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂µ

∂y

∂µ

∂z

∂µ


. (2.23.)

The isoparametric definition of hexahedron element geometry can be restated as, see

(2.18.):

x = xi Ni, y = yi Ni, z = zi Ni (2.24.)
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where the summation convention is implied over i = 1, 2, ..., 8. The Jacobian matrix J can

be constructed by differentiating these relations with respect to the natural coordinates:

J =



xi
∂Ni

∂ξ
yi
∂Ni

∂ξ
zi
∂Ni

∂ξ

xi
∂Ni

∂η
yi
∂Ni

∂η
zi
∂Ni

∂η

xi
∂Ni

∂µ
yi
∂Ni

∂µ
zi
∂Ni

∂µ


. (2.25.)

For a given point with coordinates (ξ, η, µ), using the relation (2.25.), the Jacobian can

be easily computed.

2.2. Temporal discretisation

2.2.1. Dynamic equilibrium equation

The dynamic equilibrium equation governing the dynamic response of a system of finite

elements is derived from the principle of virtual displacements and can be written in a

matrix form as:

M ü(t) + C u̇(t) + Ku(t) = R(t), (2.26.)

where M, C and K are the mass, damping and stiffness matrices; R is the vector of

externally applied loads; and u, u̇, and ü are the displacement, velocity, and acceleration

vectors. The consistent mass matrix M and the stiffness matrix K can be obtain as:

M =

∫
Ωel

NTρN dΩel, K =

∫
Ωel

BT DB dΩel, (2.27.)

where N is the finite element interpolation function matrix; ρ is the material density; B

is the strain-displacement matrix; and D is the stress-strain matrix. These integrals are

taken over the element domain Ω, i.e. the element volume V . The damping matrix C is

constructed as a linear combination of the mass and stiffness matrix with coefficients α

and β:

C = αM + βK. (2.28.)

The vector of externally applied forces consists of body (volume) forces b and surface

(traction) forces t:

R =

∫
Ωel

NT b dΩel +

∫
Γel

NT t dΓel. (2.29.)
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Additionally, the vector of externally applied forces may include node forces and initial

stress effects.

2.2.2. Time integration

Mathematically, equation (2.26.) represents a system of linear differential equations of a

second order and usually is solved by direct integration methods. The direct integration

means that the equation (2.26.) is integrated using numerical step-by-step procedure

without transforming the equation in a different form. Two basic ideas are behind the

direct numerical integration. (1) Instead of trying to satisfy the equation (2.26.) at any

time t, it does only at discrete time intervals ∆t, usually equidistant one from the other.

In other words, the inertia, damping and internal forces are calculated at the discrete

time points. (2) The variation of displacement, velocities and accelerations within each

time interval ∆t is assumed. This assumption on the form of variation within each time

interval determines the accuracy, stability, and cost of the procedure.

The equation (2.26.) can be regarded as a system of ordinary differential equations

with constant coefficients, meaning that the accelerations, velocities, and displacement

can be approximated by any finite difference expression. The solution at time t + ∆t

is then based on using the equilibrium conditions at time t. For that reason these

integration procedures are called explicit time integrations methods. In the presented

model two finite difference expressions are used, commonly known as central difference

method (Bathe, 1996) and leap frog method (Crisfield, 1991). Figure (2.5.) shows the time

stepping procedure for both methods. It is assumed that the displacements, velocities,

and acceleration vectors at time t = 0 (initial conditions) are known and that the time

step ∆t is constant. The displacement solution for time t+∆t is obtained by considering

 CENTRAL DIFFERENCE 

 

t‒Δtu 

t‒Δt/2u  Δt 

LEAP FROG 

Δt 
·  

 

t+Δtu tu  

t‒Δtu tu  

t+Δtu 

t+Δt/2u  ·  

Figure 2.5.: Time stepping for the central difference method and for the leap-frog
method.

the equation (2.26.) at time t, i.e.,

M tü + C tu̇ + K tu = tR. (2.30.)
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In case of central difference method the accelerations and velocities are approximated in

the following way which has an error in the order of (∆t)2:

tü =
1

∆t
(t−∆tu− 2 tu + t+∆tu) (2.31.)

tu̇ =
1

2∆t
(t+∆tu− t−∆tu). (2.32.)

Substituting the relations for tü and tu̇, equations (2.31.) and (2.32.) respectively, into

(2.30.) leads to:

(
1

∆t2
M + 1

2∆tC
)
t+∆tu = tR−

(
K− 2

∆t2
M
)
tu−

(
1

∆t2
M + 1

2∆tC
)
t−∆tu, (2.33.)

which can be solved for t+∆tu. In more compact form the unknown displacement vector
t+∆tu can be expressed as:

t+∆tu = M̂
−1· tR̂, (2.34.)

where the effective mass matrix M̂ and the effective load
t
R̂ are calculated as:

M̂ =
1

∆t2
M +

1

2∆t
C, (2.35.)

and
t
R̂ = tR−

(
K− 1

∆t2
M

)
tu−

(
1

∆t2
M− 1

2∆t
C

)
t−∆tu. (2.36.)

The calculation of t+∆tu obviously involves calculation of tu and t−∆tu. Because of this

at the very start of the procedure an additional step has to be carried out for calculating
0−∆tu. Since the initial displacement 0u, velocity 0u̇ and acceleration 0ü are known, the

relations (2.31.) and (2.32.) can be used to obtain 0−∆tu:

0−∆tu = 0u−∆t 0u̇ +
∆t2

2
0ü. (2.37.)

Since this solution requires large number of time steps of a small size, the overall effective-

ness of the procedure depends on the effectiveness of a single step solution. Consequently,

explicit methods are viable methods only when a lumped mass matrix can be assumed.

In that case, the inversion of the lumped mass matrix (diagonal matrix) becomes triv-

ial and the components of the displacement vector at time t + ∆t can be calculated as

follows:
t+∆tui =

∆t

Mii

t
R̂i. (2.38.)

It is also important to note that the product K tu represents internal forces at time

t which can be obtain by stress integration at element level. In other word, it is not
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necessary to assemble the stiffness matrix so the relation (2.36.) can be rewritten as:

t
R̂ = tR− tFint − 1

∆t2
M
(
t−∆tu− 2 tu

)
. (2.39.)

Considering now the equation (2.38.) with (2.39.) it becomes clear that the solution can

be carried out on a element level. That means that relatively little high speed storage is

required which makes this procedure attractive for large systems.

In case of the leap-frog method the time-stepping runs in a staggered way: velocities are

advanced in half-time steps while the displacements in full time steps (see Figure 2.5.). It

is a second-order integration scheme like the central difference method but more widely

used. The velocities in the half time steps can be approximated as:

t+∆t/2u̇ =
t+∆tu− tu

∆t
; t−∆t/2u̇ =

tu− t−∆tu

∆t
. (2.40.)

Assuming a lumped mass and damping matrix the velocity at time t + ∆t/2 can be

calculated as:

t+∆t/2u̇ =
2Mii −∆tCii
2Mii + ∆tCii

t−∆t/2u̇i +
2∆t

2Mii + ∆tCii
(tR− tF int). (2.41.)

The unknown displacements vector is then calculated as:

t+∆tu = tu + t+∆t/2v∆t. (2.42.)

Regardless of the applied finite approximation method the adopted time step ∆t has to

be smaller than a critical value ∆tcr to obtain a valid solution. These schemes are said to

be conditionally stable, i.e. for a time step larger than the critical one, any errors from

round-off rapidly accumulate blowing up the solution. Therefore, the time step should

be carefully chosen - small enough to insure a stable solution, but not too small so that

the procedure remains efficient.

Two conditions should be respected. Firstly, according to the CLF condition after

Courant, Friedrichs an Lewy (Courant et al., 1967) the time step is evaluated on el-

ement level as:

∆t <
Le√
1−ν

(1+ν)(1−2ν)
E
ρ

, (2.43.)

where Le is the characteristic element length, ν is the Poisson’s ratio, E Young’s mod-

ulus, and ρ material density. The characteristic element length for tetrahedrons is the

minimum altitude, and for hexahedrons is the ratio of the element volume and the area

of the largest element surface. Equation (2.43.) essentially says that the the selected
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time step must be smaller than the time needed for the body wave to travel across the

element.

Secondly, the adopted time step should also comply to the following condition:

∆t <
2

ωmax
, (2.44.)

where ωmax is the largest element frequency of all elements in the mesh (Bathe, 1996).

These conditions stand for linear dynamic analysis, but can be also applied for dynamic

non-linear analysis. It is important to note that in non-linear analysis the periods and

wave velocities in the finite element system change during its response. To insure the

stability of the analysis it is prudent to introduce a safety factor. In the presented

studies the calculated time step according to conditions (2.43.) and (2.44.) was reduced

by multiplying it with a factor 0.9.

Details about the efficiency of the presented explicit integration methods, their advan-

tages and disadvantages and more are discussed in Chapter 6. For contact analysis the

equation (2.26.) has to be modified by applying the forward incremental Lagrangian

multipliers method and adding the impermeability condition which is discussed in detail

in Chapter 5.



Chapter 3.

Geometrical non-linearity

Geometrical non-linearity can be safely neglected for the first problem studied since the

displacements and rotations are not large. On the other hand, the nature of the second

problem (sliding and rocking of the foundations) requires the inclusion of geometrical

non-linear effects. This chapter introduce the adopted Total Lagrange formulation used

in the FE code to account for large rotations and displacements.

3.1. Finite strain theory preliminaries

In continuum mechanics the finite strain theory (as opposed to the infinitesimal strain

theory) deals with deformations in which both the rotations and strains can be arbitrarily

large (see Figure 3.1.). Since the deformed and undeformed configurations of a body can

be significantly different, a clear distinction has to be made between them. The change

in the configuration of a continuum body is described by the displacement (vector) field

which relates the deformed configuration with the undeformed configuration.

Every geometrical non-linearity analysis is based on different configurations of the struc-

ture. Among many configurations used, the three most important are: base configuration

(the configuration defined as the origin of displacements, strain free but not necessar-

ily stress free), reference configuration (configuration to which stepping computations

in a incremental solution process are referred) and, current configuration (any admissi-

ble configuration taken during the analysis process). Different configurations taken by a

body during the analysis are linked by Cartesian global frames: the material global frame

with axes (X1, X2, X3) and the spatial global frame with axes (x1, x2, x3) with the usual

notation as in Crisfield (1991, 1997), Bathe (1996) and Bonet and Wood (2008)). While

the material frame track the base configuration, the spatial frame tracks all others.

23
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Figure 3.1.: Web buckling of a steel I profile.

The displacement of a body can be broken to two components: (1) rigid-body dis-

placement and, (2) deformation. Rigid-body displacement consists of a translation and

a rotation of the body without changing its shape or size. Deformation represents the

change in shape and/or size of the body B from a base (initial undeformed) configuration

κ0(B) to a current (deformed) configuration κt(B).

The kinematic aspect of motion is illustrated in Figure (3.2.). Consider a particle P

(P ⊂ B) in the base (undeformed) configuration and the related particle p in the current

(deformed) configuration. The base configuration is related to the coordinate system

with the origin at O with unit vectors E1,E2,E3 and the current configuration is related

to the coordinate system with the origin at o with unit vectors e1, e2, e3. The position of

particle P in the base configuration is defined with vector X and, similarly, the position

of particle p in the current configuration is defined with vector x.

In the Lagrangian description the displacement vector is:

u(X, t) = uiei. (3.1.)

Expressed in terms of material coordinates, the displacement field is:

u(X, t) = b(t) + x(X, t)−X or ui = αiJbJ + xi − αiJXJ (3.2.)

where b is the vector by which the coordinate system translation is given, and αiJ are the

direction cosines between the material and spatial coordinate systems with unit vectors

EJ and ei, respectively. Thus EJ · ei = αJi = αiJ .

In the Eulerian description the displacement vector is:

U(X, t) = UiEi. (3.3.)
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Figure 3.2.: Motion of a continuum body.

Expressed in terms of spatial coordinates, the displacement field is:

U(x, t) = b(t) + x−X(x, t) or Ui = bJ + αJixi −XJ . (3.4.)

The relationship between ui and Uj is then given by ui = αiJUJ or UJ = αJiui. The

relationship between the material and spatial coordinate system can be then expressed

as:

u(X, t) = uiei = ui(αiJEJ) = UJEJ = U(x, t). (3.5.)

The description of finite strain can be simplified by assuming that the two coordinate

systems are identical, i.e. b becomes equal to 0 and the direction cosines become Kro-

necker deltas: EJ · ei = δJi = δiJ . The displacement then may be expressed in material

(deformed) coordinates as:

u(X, t) = x(X, t)−X or ui = xi − δiJXJ (3.6.)

and in spatial (undeformed) coordinates as:

U(x, t) = x−X(x, t) or Ui = δJixi −XJ . (3.7.)

Figure (3.3.) shows deformation of a continuum body where the material and spatial

coordinate systems are identical and the body experiences deformation that change its

shape and/or size. Consider two neighbouring points Q and P with positions defined

by vectors X and X + dX, respectively. In the deformed configuration at time t they

become points p and q with position vectors x and x + dx.
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Figure 3.3.: Deformation of a continuum body.

From Figure (3.3.) follows:

x + dx = X + dX + u(X + uX)

dx = X− x + dX + u(X + uX)

= dX + u(X + dX)− u(X)

= dX + du,

(3.8.)

where du is the relative displacement vector, which represents the relative displacement

of Q with respect to P in the deformed configuration.

A fundamental measure od deformation of the body is given by the deformation gradi-

ent. The deformation gradient is a second order tensor, so called two-point tensor that

describes the stretches and rotations that the material fibres have undergone from time

0 to time t. Consequently and according to the previously introduced notation it should

be denoted as t
0F (Bathe, 1996). For simplicity, in the following discussion the left sub-

script and superscript are omitted but always implied. The derivatives of (x1, x2, x3)

with respect to (X1, X2, X3), arranged in Jacobian format, constitute the deformation

gradient:

F =
∂(x1, x2, x3)

∂(X1, X2, X3)
=



∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3


. (3.9.)
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The inverse relation gives the derivatives of (X1, X2, X3) with respect to (x1, x2, x3) as:

F−1 =
∂(X1, X2, X3)

∂(x1, x2, x3)
=



∂X1

∂x1

∂X1

∂x2

∂X1

∂x3

∂X2

∂x1

∂X2

∂x2

∂X2

∂x3

∂X3

∂x1

∂X3

∂x2

∂X3

∂x3


. (3.10.)

The coordinate differentials can be related using these matrices:

dx = F dX, dX = F−1dx. (3.11.)

From the above can be derived that the volume and density at time t can be related to

the volume V and density ρ at time 0 by:

0V
tV

=
0ρ
tρ

= detF = J, (3.12.)

where J is called the Jacobian of deformation and is equal to the determinant of the

deformation gradient.

Considering (3.8.) the deformation gradient defined in (3.9.) can be restated with the

displacements:

F =



∂u1

∂X1

∂u1

∂X2

∂u1

∂X3

∂u2

∂X1

∂u2

∂X2

∂u2

∂X3

∂u3

∂X1

∂u3

∂X2

∂u3

∂X3


+


1 0 0

0 1 0

0 0 1

 = ∇u + I, (3.13.)

where ∇u is the displacement gradient with respect to the reference configuration, i.e.

the material displacement gradient G. The components ∂ui/∂Xj can be calculated by

derivation of the appropriate shape functions as shown in sections 2.1.1. and 2.1.2.

A very important property of the deformation gradient is that can be always decomposed

into a unique product of two matrices: a symmetric matrix corresponding to a stretch

and a orthogonal matrix corresponding to a rotation (Bonet and Wood, 2008):

F = RU = vR (3.14.)

where R is the orthogonal tensor (RRT = RTR = I and R−1 = RT) representing

rtotation; U is the right stretch and v is the left stretch symmetric tensor (U = UT

and v = vT). The terms right and left mean that they are to the right and left of the
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rotation tensor R, respectively. Equation (3.14.) can be interpreted to mean that the

motion of a body can be expressed either by a pure stretch followed by a rotation, or by

a rotation followed by a pure rotation. This notion is illustrated in Figure (3.4.):
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Figure 3.4.: Representation of the polar decomposition of the deformation gradient.

The relation (3.14.) is referred to as the polar decomposition of the deformation gradient.

Pre-multiplying (3.14.) with FT gives:

FTF = FTRU = URTRU = U2 = C, U =
√
FTF =

√
C (3.15.)

where C is called right Cauchy-Green deformation tensor. Similarly, by post-multiplying

(3.14.) with FT gives:

FFT = vRFT = vRRTvT = v2 = B, v =
√
FFT =

√
B (3.16.)

where B is called left Cauchy-Green deformation tensor. Upon taking the square root of

C, the rotation can be then computed as R = FU−1.
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3.2. Total Lagrange formulation

The three most used kinematic descriptions of geometrically non-linear problems in finite

element analysis are Total Lagrangian (TL), Updated Lagrangian (UL) and Corotational

(CR). They primarily differ in the choice of the reference configuration. In TL the

base and reference configurations coalesce and remain fixed throughout the solution. In

UL the base configuration remains fixed but the reference configuration is periodically

update, usually the reference configuration is set to the last converged solution. In CR the

reference configuration is split into base and co-rotated, strains and stresses are measured

from co-rotated to current, while base configuration is maintained as reference to measure

rigid body motions. For the problems presented in this Thesis, the TL formulation was

regarded to be the most appropriate and computationally most efficient.

TL formulation include all kinematic non-linear effects due to large displacements and

large rotations. But weather the large strain behaviour is modelled appropriately, actu-

ally depends on the constitutive law specified. The basic equation considered in the TL

formulation is (Bathe, 1996):∫
0V

t+∆t
0Sij δ

t+∆t
0εij d0V = t+∆t<, (3.17.)

where < is the external virtual work, t+∆t
0Sij is the second Piola-Kirchhoff stress tensor

(PK2) and t+∆t
0εij is Green-Lagrange strain tensor (GL) integrated over the reference

volume 0V . As the notation suggests both tensors are given at time t+∆t with respect to

the initial material coordinates at time t = 0. The PK2 is the conjugate stress measure

to GL as the finite strain measure in sense of virtual work (Bathe, 1996; Crisfield, 1997).

Precisely, the dot product of stress times the material strain rate is the internal power

density.

The Green-Lagrange strain tensor, here denoted simply as ε, can be written in term of

Cauchy-Green deformation tensor or in term of gradient of deformation:

ε =
1

2
(C− I) =

1

2

(
FTF− I

)
. (3.18.)

Furthermore, its components can be evaluated in terms of displacements (in indicial

notation):

εij =
1

2
(ui,j + uj,i + uk,i uk,j). (3.19.)
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The individual components of ε can obtained by expanding (3.19.):

εij =


∂ui
∂Xi

+
1

2

[(
∂u1

∂Xi

)2

+

(
∂u2

∂Xi

)2

+

(
∂u3

∂Xi

)2
]

if i = j

1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
+

1

2

[
∂u1

∂Xi

∂u1

∂Xj
+
∂u2

∂Xi

∂u2

∂Xj
+
∂u3

∂Xi

∂u3

∂Xj

]
if i 6= j.

(3.20.)

The parts in the square brackets represent the non-linear portions of the expression. If

neglected, (3.20.) comes down to infinitesimal strain as in standard linear elasticity.

In other words, for infinitesimal small strains, for which the reference and current con-

figurations almost coincide, the GL strain tensor is reduced to the engineering strain

definition.

By rewriting (3.18.) it becomes clear that the GL is a symmetric second order tensor

immune to rigid body rotation:

ε =
1

2

(
FTF− I

)
=

1

2

(
URTRU− I

)
=

1

2

(
U2 − I

)
. (3.21.)

As was already pointed out the appropriate stress measure to use with the GL strain

tensor is the second Piola-Kirchhoff stress tensor. It should be noted that the PK2

stresses have little physical meaning, and they should be transformed to Cauchy stress for

practical purposes. Cauchy stress σ reflects what is actually happening in the material,

so it is usually called the true stress. Namely, Cauchy stress relates the actual physical

force per unit area in the current configuration with the surface area in the current

configuration.

If we relate the actual physical force per unit area in the current configuration with the

surface area in the reference configuration we get the first Piola-Kirchoff stress tensor

P, usually abbreviated as PK1. This tensor is asymmetric and is related to the Cauchy

stress tensor as:

P = JσF−T and σ = J−1PFT. (3.22.)

The second Piola-Kirchhoff stress tensor is symmetric and can be related to the first

Piola-Kirchhoff stress and Cauchy stress as:

S = JF−1σF−T and σ =
1

J
FSFT,

S = F−1P and P = FS.

(3.23.)

PK2 can be interpreted as the force per unit area in the reference configuration decom-

posed into the Lagrangian base vectors in the reference configuration. Alternatively, in
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the Cartesian basis, can be interpreted as a fictional force (the force in the current config-

uration pulled back to the reference configuration via the inverse deformation gradient)

per unit area in the reference configuration.

Another important stress measure (Bathe, 1996; Bažant et al., 2000) is the Cauchy stress

tensor rotated back to the initial material coordinates, i.e. the corotational Cauchy stress

or back-rotated Cauchy stress, here denoted as σ̂:

σ̂ = RTσR. (3.24.)

Both the Cauchy stress and the corotational Cauchy stress were used as needed in the

stress analysis.

The finite element discretisation of the principle of virtual work given in (3.17.) results

in a matrix equation in which the unknown displacement vector u is obtained explicitly

from the known state position. Using Voigt notation, the dynamic equilibrium equation

can be written as:

M tü + C tu̇ = tR − t
0F (3.25.)

where M is the mass matrix, C is the damping matrix (proportional to M), ü and u̇ are

vectors of nodal point accelerations and velocities, R is the vector of external force and

F is the vector of internal force. To obtain computational efficiency, the mass matrix M

is diagonalisated and the internal force vector F on element level is computed by stress

integration as:
t
0F =

∫
0V

t
0B

T
L
t
0Ŝ d0V , (3.26.)

where t
0BL is linear strain–displacement matrix,

t
0Ŝ is the vector form of PK2 and the

integration is performed over the reference volume 0V . In Voigt notation the full forms

of
t
0Ŝ and t

0F are:
t
0Ŝ

T =
[
S11 S22 S33 S12 S23 S13

]
, (3.27.)

t
0F

T =
[
F 1

1 F 1
2 F 1

3 F 2
1 F 2

2 F 2
3 . . . Fn1 Fn2 Fn3

]
, (3.28.)

where the lower right index indicates the coordinate, the upper right index the node of

the finite element, and n is the number of nodes per element. According to this notation

the t
0BL has the following form:



l11h1,1 l21h1,1 l31h1,1 l11h2,1 . . . l31hn,1

l12h1,2 l22h1,2 l32h1,2 l12h2,2 . . . l32hn,2

l13h1,3 l23h1,3 l33h1,3 l13h2,3 . . . l33hn,3

(l11h1,2 + l12h1,1) (l21h1,2 + l22h1,1) (l31h1,2 + l32h1,1) (l11h2,2 + l12h2,1) . . . (l31hn,2 + l32hn,1)

(l12h1,3 + l13h1,2) (l22h1,3 + l23h1,2) (l32h1,3 + l33h1,2) (l12h2,3 + l13h2,2) . . . (l32hn,3 + l33hn,2)

(l11h1,3 + l13h1,1) (l21h1,3 + l23h1,1) (l31h1,3 + l33h1,1) (l11h2,3 + l13h2,1) . . . (l33hn,3 + l33hn,1)


(3.29.)
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where hi,j are the shape function derivatives and lij are the components of the dis-

placement gradient in material coordinates and are calculated as follows, see Equation

(3.13.):

lij =
n∑
k=1

hk,j
tuki . (3.30.)



Chapter 4.

Material non-linearity

In the first numerical study the structure (reinforced concrete frame) and the ground

(rock masses) are analysed with appropriated constitutive models: microplane for the

concrete and plasticity for the reinforcement and the ground. In the second numerical

study, where the emphasis is on the SSI, the ground is modelled the same way but

the structure is treated as linear elastic. Accordingly, this chapter gives a theoretical

overview of these models along with different computational aspects and the numerical

implementation.

4.1. Plasticity model

4.1.1. Stress-strain relations in plasticity

A yield criterion f is a hypothesis defining the limit of elasticity in a material and the

onset of plastic deformation under any possible combination of stresses. In a 3D stress

space (with orthogonal principal stress axes) the yield criterion can be expressed as a

yield surface, or yield locus. Allowing for the possibility of a non-associative flow rule,

plastic strain increment occur normal to a plastic potential g (Crisfield, 1991):

ε̇p = λ̇
∂g

∂σ
= λ̇ b, (4.1.)

where b is the normal to the plastic potential surface (a column vector) and λ̇ is a

positive constant usually referred to as the plastic strain-rate multiplier. The stress

change is then related to the strain change by:

σ̇ = De(ε̇t − ε̇p) = De(ε̇t − λ̇ b), (4.2.)

33
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where ε̇t (or simply ε̇) is the total strain rate, ε̇p is the plastic strain rate, and assuming

isotropic elasticity, De is the elastic stress-strain matrix:

De =
E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)


. (4.3.)

For plastic flow to occur, the stresses must remain on the yield surface, consequently:

ḟ =
∂f

∂σ

T

σ̇ = aT σ̇ = 0. (4.4.)

Equation (4.4.) is illustrated in Figure 4.1.: for a plastic flow, vector a is normal to the

yield surface while the stress change σ̇ is tangential to it.

 

 σ1 

 σ2 

 σ 

 σ 

 a = f/σ  

 . 

Figure 4.1.: The von Mises yield criterion expressed in terms of principal stress and
plane stress conditions

The plastic strain-rate multiplier λ̇ can be obtained by pre-multiplying equation (4.1.)

by the vector aT and then using it with (4.4.) :

λ̇ =
aTDeε̇

aTDeb
. (4.5.)

Substituting (4.5.) into (4.2.) finally gives:

σ̇ =

(
De −

Deba
TDe

aTDeb

)
ε̇, (4.6.)

where the second term in the brackets is the elasto-plastic stress-strain matrix Dep.

Note that the previous relations do not include hardening, i.e. they represent an elastic-

perfectly plastic behaviour. Also, in the presented numerical studies associated flow rule
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is assumed, i.e. the plastic potential function is set equal to the yield surface function

(f ≡ g) and consequently a = b.

4.1.2. Modified Euler scheme with sub-stepping

The non-linear finite element analysis comes to the determination of the increment in

stresses which is obtained by integrating the constitutive relations (see the rate form of

the stres-strain relation (4.2.)). These integrating procedures are usually referred to as

explicit or implicit.

In an implicit method the equations are solved at unknown stress states and consequently

the solution is obtained in an iterative way. If a Newton-Raphson scheme is used for this

task, the second derivates of the yield function and the plastic potential are needed. The

most used implicit procedure is the backward Euler algorithm which can be summarised

as follows: first, an elastic trial stress is computed using the tangent elastic or secant

elastic moduli and then the trial stress is returned back to the yield surface by closest-

point projection iteration. Although, this approach has many advantages, it has also one

draw-back. Since it needs second derivates of the yield function and the plastic potential,

its implementation can be very difficult for more complex plastic models.

In an explicit integration scheme, the yield surface and the required gradients are eval-

uated at known stress states which means that no iteration is strictly necessary (Sloan

et al., 2001; Jeremić and Yang, 2002). However, it is usually prudent to introduce a

simple iteration to correct the final stresses to the yield surface. Explicit schemes require

only the first derivatives of the yield function and the plastic potential. That makes

them more straightforward and easy to implement then the implicit schemes (Harewood

and McHugh, 2007; Sloan et al., 2001). Their accuracy and efficiency can be significantly

increased by introducing an automatic sub-incrementation and error control. Each in-

crement is divided in a number of smaller increments and for each of them the exact

equilibrium is ensured. This method gives much better result than satisfying the the

equilibrium at the beginning of the increment and at the end only. In this procedure

usually an linear strain path within an increment is assumed. Unlike implicit methods,

explicit methods need to find the intermediate yield stress point when stress pass from

an elastic to a plastic state.

The adopted scheme is based on the assumption that the rate of deformation tensor can

be additively decomposed into an elastic part and a plastic part. An alternative assump-

tion would be that the deformation gradient tensor can be multiplicatively decomposed in

an elastic part and a plastic part. This assumption is based on an intermediate material

configuration, which is obtained by a conceptual destressing of the currently deformed
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configuration to zero stress. The presented modified forward Euler scheme with the ad-

ditive decomposition of the rate of deformation has proven reliable for the given tasks

while maintaining relative simplicity and efficiency (Sloan et al., 2001). Regarding the

choice of strain and stress measures see an in-depth discussion in sections 3.2. and 4.2.2.

It should be also noted that in the present study, due to the nature of the problem, no

large deformations are expected.

I Modified forward Euler algorithm for elasto-plastic models

In this Thesis, integration of the rate form of the stress–strain relation is performed

by an explicit integration scheme with automatic sub-stepping and error control based

on the forward Euler algorithm (Sloan et al., 2001). The procedure will be presented

as a series of computational steps in case of a conventional elasto-plastic model with a

constant stress-strain matrix. All the quantities are denoted with a 0 or a 1 in their

index representing the start or the end of an increment. Accordantly, for a imposed

strain increment, the corresponding stress increment is computed by integrating the

stres-strain relations over an pseudo-time interval T = 0 to T = 1. The yield condition

for computational purposes is replaced by the approximation f ≤ |FTOL| where FTOL
is a small tolerance, typically in the range of 10−6 to 10−9.

The stress associated with an imposed strain increment is calculated according the fol-

lowing steps. For the imposed strain increment, an elastic trial stress is computed.

Accordantly, the stress increment can be (a) purely elastic, (b) purely plastic and (c) it

undergoes a transition from elastic to plastic. In the latter case, a yield surface intersec-

tion point has to be found (assuming additive decomposition of the strain increment).

Generally, an iterative procedure is started to locate the intersection point but for a

conventional ideally elastoplastic model, the intersection point can be directly calculated

without any iterations. After that, the plastic portion of the strain increment is automat-

ically divided into a number of subincrements and the appropriate stress subincrements

are computed. At the end of each subincrement, a correction of stresses to yield surface

is performed to avoid the so-called yield surface drift (Crisfield, 1991, 1997; Sloan et al.,

2001).

(1) Enter with the initial stress σ0 and the imposed strain increment ∆ε for the current

step.

(2) Compute the elastic stress increment ∆σe and the trial elastic stress σe as:

∆σe = De∆ε,

σe = σ0 + ∆σe.
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Figure 4.2.: Solution procedure: A - yield surface intersection, elastic to plastic
transition; B, C and D - sub-increments; E - final solution obtained with correction
from D.

If f(σe) ≤ FTOL than the stress increment is purely elastic: set σ1 = σe and exit

at the end of increment with T = 1.

(3) If f(σ0) < −FTOL and f(σe) > FTOL then the stress undergoes a transition

from elastic to plastic behaviour. Find the yield surface intersection point (see

Figure (4.2.)), i.e. compute the portion of ∆ε that corresponds to purely elastic

deformation, α, using the Pegasus intersection scheme (see further in the text) and

then go to step 5.

(4) If f(σ0) ≤ FTOL and f(σe) > FTOL then check for elasto-plastic unloading by

computing:

cosΦ =
aT∆σe
‖ a ‖ ‖ σe ‖

,where a is evaluated at σ0.

If cosΦ ≥ −LTOL then:

The stress is purely plastic - set α = 0.

else

Elastic unloading occurs followed by a plastic flow. Compute the

portion of ∆ε that corresponds to a purely elastic deformation, α,

using the Pegasus intersection scheme for elasto-plastic unloading.

else:

The stress state is illegal because it lies outside the yield surface - exit with

error.

(5) Update the stresses at the onset of plastic yielding as σ0 ← σ0 + α∆σe and then

compute the portion of ∆σe that corresponds to plastic deformation according to

∆σe ← (1− α)∆σe.
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(6) Set T = 0 and ∆T = 1.

(7) While T < 1, perform steps (8) to (15).

(8) Compute ∆σi for i = 1 and 2 using:

∆σi = ∆T∆σe −∆λiDebi,

where

∆λi = max

(
∆TaT

i ∆σe

aT
i Debi

, 0

)
, ai =

(
∂f

∂σ

)
i

, bi =

(
∂g

∂σ

)
i

,

are evaluated at σ̄i, and

σ̄1 = σT , σ̄2 = σT + ∆σ1.

(9) Compute the new stresses and hold them in temporary storage according to:

σ̄T+∆T = σT + 1
2(∆σ1 + σ2).

(10) Determine the relative error for the current substep from:

RT+∆T =
‖ ∆σ2 −∆σ1 ‖

2 ‖ σ̄T+∆T ‖
.

(11) If RT+∆T > STOL (where STOL is a specified tolerance) the substep is failed

and a smaller pseudo time step needs to be found by extrapolation. First

compute:

q = max
(

0.9
√
STOL/RT+∆t, 0.1

)
,

and then set:

∆T ← max (q∆T,∆Tmin).

and then return to step (8).

(12) The substep is successful, so update the stress according to:

σT+∆T = σ̄T+∆T .

(13) If |f(σT+∆T )| > FTOL then correct σT+∆T back to the yield surface using

the correction algorithm.

(14) Extrapolate to obtain the size of the next sub-step by computing:

q = max
(

0.9
√
STOL/RT+∆t, 1.1

)
.

If the previous step failed, limit the step size growth further by enforcing

q = min (q, 1). Compute the new step size and update pseudo time according

to:

T ← T + ∆T, ∆T ← q∆T .

(15) Ensure the next time step size is not smaller than the minimum step size and

check that integration does not proceed beyond T = 1 by setting:
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∆T ← max (∆T,∆Tmin) and then ∆T ← min (∆T, 1−∆T ).

(16) Exit with stress σ1 at the end of increment with T = 1.

I Pegasus intersection scheme

The Pegasus procedure of Dowell and Jarratt (1972) is a very efficient way of finding the

intersection needed in step (3) of the modified Euler forward algorithm. The procedure

goes as follows.

(1) Enter with the initial stress σ0, the strain increment ∆ε, initial values of α0 = 0

and α1 = 1 bounding the intersection with the yield surface, and the maximum

number of iterations MAXITS = 10.

(2) Calculate: ∆σe = De∆ε.

(3) Set F0 = f(σ0 + α0∆σe) and F1 = f(σ0 + α1∆σe).

(4) Perform steps (5) to (8) a MAXITS number of times

(5) Calculate:

α = α1 − F1(α1 − α0)/(F1 − F0),

Fnew = f(σ0 + α∆σe)

(6) If |Fnew| ≤ FTOL go to step (10).

(7) If Fnew is of opposite sign to F0 then:

set α1 = α0 and F1 = F0,

else

set F1 = F1F0/(F0 + Fnew).

(8) Set α0 = α and F0 = Fnew.

(9) If convergence is not achieved afterMAXITS number of iterations, exit with error

message.

(10) Exit with α.

I Correction of stresses to yield surface

It is possible that, at the end of an increment, the stress diverge from the yield surface.

This violation of the yield condition is commonly referred to as yield surface drift. The

amount of drift depends on the accuracy of the explicit integration scheme and the non-

linearity of the constitutive relations. Sub-incrementation can significantly reduce the
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dirft. Nevertheless, Crisfield (1991) recommends to introduce some form of stress cor-

rection as the effects of drift are cumulative and possibly can heavily affect the solution.

At the end of each sub-increment the following procedure is called. First, the correction

is attempted by the so called consistent return scheme. In rare cases when it fails, the

correction is performed by the correction normal to the yield surface which, although is

less accurate, is very robust.

(1) Enter with uncorrected stress σ0.

(2) Perform steps (3) to (4) MAXITS times (typically five to ten).

(3) Compute:

δλ = f0/(a
T
0 Deb0),

and then correct the stress using:

σ = σ0 − δλDea0.

(4) If |f(σ)| > |f(σ0)|, then abandon previous correction, and correct the stress

normal to the yield surface by computing:

δλ = f0/(a
T
0 a0),

σ = σ0 − δλa0.

(5) If |f(σ)| ≤ FTOL, then go to step (8).

(6) Set σ0 = σ.

(7) If convergence is not achieved after MAXITS steps, print error message and exit.

(8) Exit with stress σ on the yield surface.

The applied solution procedures provides an effective way of integrating a wide range of

elastoplastic constitutive laws: Tresca, Mohr-Coulomb, modified Cam clay, generalised

Cam clay and many others complex model (Sheng et al., 2000; Zhao et al., 2005). Ad-

ditionally, it fits very well with the adopted explicit time integration scheme. For the

purposes of this Thesis two yielding criteria were used: the von Mises yield criterion (for

the steel reinforcement) and the Drucker-Prager yield criterion (for the ground material).

4.1.3. The von Mises yield criterion

The von Mises yield criterion states that the yielding of a material begins when the

second deviatoric stress invariant J2 reaches a critical value and prior to yield, material
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response is assumed to be elastic. Mathematically it can be expressed as (Crisfield, 1991):

fvm =
√

3J2 − σ0, (4.7.)

where σ0 is the yield strength of the material in case of simple tension and σe =
√

3J2 is

the effective stress (or von Mises stress).

The von Mises yield criterion is independent of the first stress invariant I1, i.e. the

onset of yielding does not depend on the hydrostatic component of the stress tensor.

Sometimes this criterion is referred to as J2 plasticity. Equation (4.7.) can be expanded

in terms of the Cauchy stress tensor components as:

fvm =
1√
2

√
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6τ2

xy + 6τ2
yz + 6τ2

zx − σ2
0 (4.8.)

or in principal stress as:

fvm =
1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − σ2

0. (4.9.)

In the three-dimensional space the above equation represent a circular cylinder with the

radius of R =
√

2
3σ0 around the hydrostatic axis σ1 = σ2 = σ3 (see Figure 4.3.a).

 
 σ1 

 σ2 

 σ3 

von Mises 

yield surface 

(a) The von Mises yield criterion

  σ1 

 σ2 

 σ3 

Drucker-Prager  
yield surface 

(b) The Drucker-Prager yield crite-
rion

Figure 4.3.: Yield surfaces in principal stresses.
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Differentiating equation (4.8.) gives:

a =
∂f

∂σ
=

1

2σe



2σx − σy − σz
2σy − σx − σz
2σz − σx − σy

6τxy

6τyz

6τzx


. (4.10.)

An illustration of von Mises yield criterion is given in Figure (4.4.) which shows the

process of a plastic hinge formation in a cantilever beam. As was previously noted, the

von Mises criterion is independent of the first stress invariant, i.e. the plastification

proceeds equally on both the compressive and the tensile side.

 

Figure 4.4.: Forming of a plastic hinge in a cantilever beam using the von Mises yield
criterion.

4.1.4. The Drucker-Prager yield criterion

The criterion proposed by Drucker and Prager (1952) is a smooth aproximation to the

Mohr-Coulomb law. It can be regarded as a modification od the von Mises criterion in
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which an extra term is included to introduce pressure sensitivity. The criterion states

that the plastic yielding begins when the second invariant of the deviatoric stress and

the hydrostatic pressure reach a critical combination (Crisfield, 1991):

fdp =
√
J2− αI1 − k, (4.11.)

where α and k are material parameters. In the principal stress state, the locus of this

criterion is a circural cone whose axis is the hydrostatic line (see Figure 4.3.b). For α = 0

it becomes the von Mises criterion.

Since the rock mass and soil parameters are often given in terms of Mohr-Coulomb

parameters, i.e. cohesion c and friction angle φ, it is convenient to relate these parameters

to the Drucker parameters α and k. If the Drucker-Prager yield surface circumscribes

the Mohr–Coulomb yield surface then the expressions for α and k are:

k =
6 c cosφ√

3 (3 + sinφ)
, α =

2 sinφ√
3 (3 + sinφ)

, (4.12.)

or if Drucker-Prager yield surface inscribes the Mohr–Coulomb yield surface:

k =
6 c cosφ√

3 (3− sinφ)
, α =

2 sinφ√
3 (3− sinφ)

. (4.13.)

These parameters can be also expressed in terms of yield stresses in uni-axial tension σt
and compression σc :

α =
1√
3

ft − fc
ft + fc

, k =
2√
3

ft· fc
ft + fc

, (4.14.)

Again, if the values of σt and σc coincide, the Drucker-Prager yield criterion comes down

to the von Mises yield criterion. The normal to the yield surface can be obtained by

differentiating (4.11.):

a =
∂f

∂σ
=

1

6
√
J2



6α
√
J2 + (2σx − σy − σz)

6α
√
J2 + (2σy − σx − σz)

6α
√
J2 + (2σz − σx − σy)

6τxy

6τyz

6τzx


. (4.15.)

An illustration of the Drucker-Prager yield criterion is given in Figure (4.5.) which shows

a slope failure induced by a monotonically increasing vertical load at the top of the slope.
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Figure 4.5.: Modelling of a slope failure using the Drucker-Prager yield criterion.

4.2. Microplane model

4.2.1. Introduction

Concrete is a composite material made of aggregate interconnected by a cement matrix.

By its mechanical behaviour, concrete falls into the group of quasi-brittle materials. This

phenomenological macro-scale observation is the result of micro-structural phenomena

such as cohesion, friction and aggregate interlocking. Accordingly, the modelling of

concrete can be approached by describing the stress-strain relations at the microlevel

(microscopic models) or by considering the material behaviour as an average response of

a complex micro-structural stress transfer mechanisms (macroscopic models). Although

the microscopic approach is more accurate, for practical purposes only the macroscopic

models are a viable option.

In the microplane model, the material is characterized by stress-strain relation on planes

of various orientations. These planes can be regarded as damage or weak planes in the

micro-structure, such as contact layers between aggregate pieces in the concrete. In an

actual FE analysis the macro-micro transitions of mechanical properties are carried out

by projecting the macroscopic values onto the tangential planes of a unit sphere imagined

at every FE Gauss point. For computational purposes, the ideal surface of the sphere is

replaced by a discrete geometrical approximation. To preserve an accurate description

of the model while maintaining computational efficiency Bažant and Oh (1986) proposed

two 21-integration points formulae which are implemented in the presented computer

program (see Figure (4.6.)). The 21 integration points approximate one symmetric half

of the sphere.

The main advantage of this model is its conceptual simplicity: only a set of uniaxial

stress-strain curves on the microplane level need to be defined and the macroscopic model

response comes automatically out as a result of the numerical integration over a number
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Figure 4.6.: Spatial discretisation of the surface of the sphere by 21 integration points:
(a) 9th degree without fully symmetric formula and, (b) 9th degree with fully symmetric
formula.

of microplanes. Furthermore, the tensorial invariance restrictions need not be directly

enforced. They are automatically satisfied by superimposing, in a suitable manner, the

responses from all microplanes. The model is suitable for full three-dimensional analysis

and a number of numerical studies proved the model’s capabilities in realistic prediction

of concrete behaviour (Bažant and Prat, 1988; Bazant et al., 1996a,b; Bažant and Ožbolt,

1990; Bazant et al., 2000; Caner and Bazant, 2000).

4.2.2. Microplane model with relaxed kinematic constraint

In the early phase of the theory development it was assumed that the stress vector

acting on microplanes with different orientations is the projection of the macroscopic

stress tensor integrated at the gauss points. Later on, it was realised that that in order

to obtain the unique solution for softening, the static constraint should be replaced with

the kinematic constraint in which the microplane strain components are projections of

the macroscopic strain tensor. The model used in this Thesis is a modification of the M2

model (Bažant and Prat, 1988; Ožbolt and Bažant, 1992, 1996) and based on the relaxed

kinematic constraint principle (Ožbolt et al., 2001). It is aimed to be used for three-

dimensional damage and fracture analysis of concrete and reinforced concrete structures

in the framework of smeared crack approach. The main assumptions, theory and features

of the model are hereafter presented.

Microplane coordinate system

The microplanes are tangential planes on the unit micro-sphere defined by outward nor-

mal vectors:

n = {n1, n2,n3}. (4.16.)
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The related microplane tangential unit vectors m and k:

m = {m1,m2,m3}, k = {k1, k2, k3}, (4.17.)

are chosen in such a way to form a local coordinate system for each microplane, i.e.

k×m = n (see figure 4.7.).

 (a) (b) 

T

N
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Figure 4.7.: Representation of a single microplane: (a) microplane unit vectors and,
(b) decomposition of the total macroscopic strain tensor on the microplane.

Microplane strain components

According to the kinematic constraint principle the strain vector eN on a particular

microplane can be calculated from the macroscopic tensor ε as (Bazant and Gambarova,

1984):

εNi = εijnj . (4.18.)

The equation above is given in indicial notation where the lower-case indices refer to the

components in Cartesian coordinates xi, i = 1, 2, 3. The normal strain on the microplane

is then:

εN = niεNi . (4.19.)

By substituting (4.18.) into (4.19.) the microplane normal component eN can be related

to the macroscopic strain tensor ε through the projection tensor N:

εN = Nijεij , (4.20.)

where

Nij = ninj . (4.21.)
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The shear strains on each microplane are characterised by their components in directions

defined by orthogonal unit vectors m and k, of components mi and ki, lying within the

microplane. The directions of vectors m and k can chosen arbitrary, but to minimise

the direction bias the vector m are alternatively chosen normal to axes x1, x2, x3 and

then k is determined as m × n. The shear strain components in these directions are

eM = mi(εijnj) and eK = ki(εijnj). Taking the advantage of the symmetric property of

the tensor εij :

eM = Mijεij , eK = Kijεij , (4.22.)

where the projecting tensors Mij and Kij are:

Mij = (minj +mjni)/2, Kij = (kinj + kjni)/2. (4.23.)

Furthermore, the length of vector n can be decomposed as:

eN = eV + eD (4.24.)

where eV is the volumetric part and eD is the deviatoric part given by:

eV =
1

3
Tr(ε); eD = eN − eV . (4.25.)

The volumetric part eV does not depend on the microplane orientation, i.e. for a given

Gauss point at which the macroscopic strain tensor ε is projected onto the corresponding

microplanes, the volumetric strain components are equal and constant.

As was already stated, the present study uses the microplane model with relaxed kine-

matic constrain developed by Ožbolt et al. (2001). It was proposed as an extension of

the kinematic constraint models by Bažant and Prat (1988) and by Ožbolt and Bažant

(1992). The later introduced a general cyclic form with rate sensitivity and both models

demonstrated their capabilities in realistic prediction of concrete behaviour. However,

for dominant tensile damage, i.e. tensile softening, the models exhibit pathological be-

haviour which is manifested by unrealistic lateral expansion. In the framework of contin-

uum mechanics, cracking is represented by the localisation of strains. In reality, material

ruptures and the strain field experiences a discontinuous change. Perpendicularly to the

discontinuity plane as well as in the three-dimensional space around it, the stress and

strains relax (unload) proximately to zero (see Figure 4.8.).

In order to eliminate this pathological behaviour the so-called effective microplane strain

components are adopted which account for the loss of continuity of the strain field for

dominant tensile loads. Basically, instead of working with the microplane strain cal-

culated from the total strain tensor (continuous strain field, see (4.21.) and (4.22.)),
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Crack 
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Figure 4.8.: Material loading zones around the crack surface.

the microplane stress is calculated from the effective microplane strain. Except for the

volumetric strain, the effective microplane strains are resolved components of the total

macroscopic strain tensor εij multiplied by function ψ:

eV = εkk/3, eD = (Nijεij − eV )ψ,

eM = Mijεijψ, eK = Kijεijψ.

(4.26.)

For dominant tensile loads, ψ introduced in (4.26.) relaxes the kinematic constraint.

Since it reflects discontinuity as a consequence of discrete tensile cracking, it is know

as the discontinuity function. For each individual microplane it is decided weather the

function applies or not and is related to the volumetric stress-strain relationship. At the

onset of cracking (localisation od strain), the microplane perpendicular to to the crack

surface has negative deviatoric strain (eD = eN − eV ; eN → 0 and eD < 0), i.e the plane

need to be unloaded or relaxed. On the contrary, the microplane parallel to the crack

surface, has positive deviatoric strain (eD = eN − eV ; eN > eV ; eN > 0→ eD > 0) and

it is loaded in tension. The total strain for individual deviatoric and shear components

is then multiplied by the discontinuity function depending on weather the microplane is

loaded or unloaded.

To account for the above effects the discontinuity function takes the form depending on

the strain in question. For the deviatoric strain the discontinuity function is determined

as:

eD < 0, eV > 0, σI > σI,min → ψ = e−|f(σI)eV /e1|m ,

eD > 0 → ψ = 1,
(4.27.)

where e1 is an empirical factor (see further in text), σI,min is a small limit value of

the maximum principal stress, and f(σI) is a function introduced to assure a smooth

transition from a discontinuous state (crack) into a continuous state (crack closure and
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subsequently loading in compression), see Figure 4.9. This function is determined as:

σI,min 6 σI 6 0 → f(σI) = 1− χ, χ = sin

(
π

2

∣∣∣∣ σI
σI,min

∣∣∣∣) ,
σI > 0 → f(σI) = 1,

σI < σI,min → f(σI) = 0.

(4.28.)

The shear discontinuity function for individual microplanes is:

eV > 0, σI > σI,min → ψ = e−|f(σI)eV /e1|m ,

else → ψ = 1.
(4.29.)

 (a) 

+eV 
discontinuum continuum 

sI   sI,min 

sI   0 
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Strain discontinuity function (b) Stress discontinuity function 
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+sI 

f (sI) 

sI,min 

Figure 4.9.: Microplane discontinuity function: (a) strain and (b) stress discontinuity
function.

Microplane stress components

Microplane stress increments are calculated from the respective known strain increments

as:

dsV = EV deV ,

dsD = EDdeD,

dsM = EMdeM ,

dsK = EKdeK ,

(4.30.)

where EV , ED, EM and EK represent tanget moduli obtained from known uni-axial

microplane stress-strain relationships which are the same as those introduced by Ožbolt
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and Bažant (1992) and are based on the scalar damage theory:

sV = CV eV ,

sD = CDeD,

sM = CMeM ,

sK = CKeK ,

(4.31.)

with (expect for volumetric compression):

CV = EV,0(1− ωV ),

CD = ED,0(1− ωD),

CT = ET,0(1− ωT ),

(4.32.)

where CV , CD and CT are the secant moduli with their initial values equals to the

respectiv tangent moduli. The shear microplane moduli CT represents both components

M and K. The scalar damage parameters ω are defined as:

ωV = 1− e−|eV /e1|
m

for eV ≥ 0,

ωD = 1− e−|eD/e1|
m

for eV ≥ 0,

ωD = 1− e−|eD/e2|
n

for eV < 0,

ωT = 1− e−|eT /e5|
k
,

(4.33.)

where parameters e1, e2, e3, e4,m, n, k are empirical material constants. Parameter e5 in

equation (4.33.) is dependent on the volumetric strain eV as: e5 = e3 if eV ≥ 0 and

e5 = e3 − e4 if eV < 0. It reflects the internal friction which is an additional kinematic

constraint. For volumetric compression, there is no damage (ωV = 0), so stress-strain

relationship is adopted as:

CV = EV,0

[(
1 +

∣∣∣eV
a

∣∣∣)−p +
∣∣∣eV
a

∣∣∣q] , (4.34.)

where a, b, p, q are also empirical constants. The above equations are schematically plot-

ted in Figure 4.10. Note that only the shear component is assumed to be symmetric.

Macroscopic stress tensor

After retrieving the microplane stress components, the macroscopic stress tensor σij is

obtained by integrating all the microplane stresses over all microplanes such that the

stress equilibrium between all the microplane stresses and macroscopic stress tensor is

approximately fulfilled. In total form, this equilibrium can be approximately be enforced
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Figure 4.10.: Schematic representation of microplane stress-strains relationships for
virgin load: volumetric V , deviatoric D and shear-stress components M and K.

by the virtual work equation as (Bažant and Prat, 1988):

2π

3
σijδεij =

∫
S

(sNδeN + sMδeM + sKδeK) Ω(n)dS, (4.35.)

where n represents unit vector normal to the microplanes and δεij , δeN , δeM , δeK are

small variations of the strains on the macro and micro levels. The left-hand size of

equation (4.35.) is the macroscopic work done on the unit sphere while the right-hand

side is the microscopic work done over the surface of the same sphere. Function Ω(n) is

a weight function of the normal direction n that introduces anisotropy of the material

in its initial state. For normal concrete Ω(n) is equal to 1, which implies initial isotropy.

By substituting (4.20.) and (4.22.) into (4.35.) we get the macroscopic stress tensor as:

σij =
3

2π

∫
S

[
ninjsV + ninjsD +

1

2
(minj +mjni)σM

1

2
(kinj + kjni)σK

]
Ω(n)dS

(4.36.)

Carol and Bazant (1997) suggest that the term ninjσD in (4.36.) should be replaced

by (ninj − δ/3)sD. This integral is evaluated numerically employing the approximate

formula:
4π

3

∫
S

∼= 6
n∑
κ=1

Xκ, (4.37.)

in which subscript κ refers to a certain discrete set of microplanes characterised by spatial

discretisation of their normals associated with points on a unit hemisphere, and Xκ are

the weights of the directions, i.e. numerical integration coefficients.

The presented microplane model also includes rate sensitivity (Ožbolt et al., 2006; Ožbolt

et al., 2014). The rate of deformation is measured at the macroscopic level, with the

scalar quantity associated to the Green-Lagrange strain tensor leaving the micro stresses

unaffected. However, when structural inertia forces govern structural response, the rate

dependency at the constitutive level is not of special interest (Ožbolt et al., 2011; Travaš

et al., 2009; Travaš, 2009).
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Choice of stress and strain tensor for microplane model

As was already discussed, the conceptual simplicity of the microplane model comes from

the fact that the normal and shear stress components on the microplanes are directly used

to describe physical phenomena such as friction and strength or yield limit, as opposed

to classical (macroscopic) constitutive equations expressed in terms of tensors and their

invariants. However, in this approach it is necessary that the stress components on

the microplanes characterize the true stress on planes of various orientations within the

material. For large stretches the components of the second Piola-Kirchhoff stress tensor

can differ considerably from the corresponding components of the Cauchy stress tensor.

Therefore, for large strains, the Cauchy stress, which rapresents true stress, should be

considered. Although the Cauchy stress tensor would give a clear physical meaning for

the microplane stress components, it is not referred to the initial configuration of the

material and is not conjugate to any Lagrangian finite strain tensor. Therefore, it cannot

be used in a constitutive equation for a material such as concrete that has a memory of

the initial state. An appropriate stress measure is then the Cauchy (true) stress tensor

rotated back to the initial coordinates attached to the material also called back-rotated

Cauchy stress or corotational Cauchy stress, see equation (3.24.).

The back-rotated Cauchy stress tensor coincide with the Cauchy stress tensor if there

is no coordinate rotation, i.e. R = I. For non-zero rotations the component values get

transformed while the physical meaning of stress remains the same. The hydrostatic

pressure, which is important for pressure-sensitive materials such as concrete, soils and

rocks, is given by tr S which is true regardless of rotation because the trace of a tensor

is an invariant.

Regarding the strain measure, the most appropriate choice is the Green-Lagrange strain

tensor. The use of any other strain tensor would greatly complicate the formulation of

a microplane constitutive model (Bažant et al., 2000). Consequently, it is reasonable

to base the finite-strain microplane model on the Green-Lagrange strain tensor and the

back-rotated Cauchy stress tensor.

The above is extensively discussed in Bažant et al. (2000) and the transformation between

different stress measures are given in section 3.2. In this context, it should be noted that

in the present studies the stretches are not large.

Cyclic loading

The present model include unloading, loading and cyclic loading for a general triaxial

stress-strain state. For this purpose loading-unloading rules have to be added to each
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uni-axial stress-strain microplane relationship.

Each microplane strain component has to be monitored for virgin loading which occurs

if:

e∆e > and (e− emax)(e− emin) > 0, (4.38.)

where emax and emin are the maximum and minimum values of the effective microplane

strain that have occurred so far. If these conditions were not met, unloading or reloading

takes place. For cycling loading, as opposed to virgin loading, the stress-strain relations

must be written in incremental form:

dσ = Ede, (4.39.)

where E represents unloading-reloading tangent moduli which is given by:

E =E0α+ σ

(
1− α
e− e1

)
,

e1 = ep −
sp
E0

+ β(e− ep) if e > ep,

e1 = 0 otherwise.

(4.40.)

where sp and ep denote the positive or negative peak stress and strain for each microplane

component using values s+
p , e+

p for positive and s−p , e−p for negative peaks. α and β are

empirically chosen constants between 1 and 10 and E0 is the initial elastic stiffness moduli

for the corresponding microplane component. The loading-unloading rules are illustrated

in Figure 4.11. In the compressive part the loading-unloading modulus is defined by the

initial elastic modulus EV,0 while for the tension part the loading-unloading modulus is

controlled by Equation (4.40.). Typical load cycle for virgin loading in tension, unloading

in compression and reloading in tension is O-P-A-B-C-D-A-B-E-F-O-A. Virgin loading

in compression, unloading and loading in tension is O-A’-B’-D’-A’ or O-A’-B’-D’-A’ or

O-A’-B’-O-P-A-B-E-F-O-A.

Smeared crack concept

The so called smeared crack concept is used for the description of cracking (Ožbolt and

Bažant, 1996; Weihe et al., 1998). According to this concept, the cracking trajectories

are represented by contours of principal tensile deformations with a threshold value set

to the value of the reference deformation εr that causes the crack to open. According to

the engineering definition od strain, εr is defined as:

εr =
wcr
Lmin

(4.41.)
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Figure 4.11.: Loading-unloading rules for volumetric and deviatoric microplane strain
components.

where wcr is the critical crack aperture depended on the type of concrete and Lmin is the

minimum finite element edge length. To obtain results that are objective with respect

to element size, the crack band method is employed (Bažant and Oh, 1983; Ožbolt and

Bažant, 1996).

An illustration of the smeared crack concept is given in Figures (4.12.) and (4.13.). In

both examples the mesh continuity is preserved which satisfies the continuum mechanics

assumptions. Figure 4.12. shows crack evolution in a concrete block by a controlled

displacement as shown. Similarly, Figure 4.13. shows cracking of a reinforced concrete

cantilever beam. The reinforcement bars are represented by rows of finite elements

modelled according with theory of plasticity by adapting the von Mises yield criterion.

    

Figure 4.12.: Crack evolution in a concrete block.
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Figure 4.13.: Cracking of a reinforced concrete cantilever beam.





Chapter 5.

Contact non-linearity

The key point of the second numerical study is the modelling of the soil-foundation

interface as a contact discontinuity with the aim to capture possible foundation sliding

and/or uplifting during strong ground motion. Consequently, this chapter is dedicated

to the theoretical preliminaries of contact mechanics and its numerical application.

5.1. Introduction

In order to be able to properly describe the contact between bodies (FE meshes) addi-

tional kinematic and kinetic conditions have to be set on the contact interface Γc (see

Figure 5.1.). The kinematic condition assures that there is no penetrations between the

body domains and the kinetic condition takes into account the physical behaviour at the

contact interface. Accordingly, the contact problem (also known as the Signorini prob-

lem) can be formulated by adding these conditions to the differential equations governing

continuum deformation. These additional boundary conditions can be stated as:

gi > 0, (5.1.a)

ti 6 0 on Γc, (5.1.b)

giti = 0. (5.1.c)

The first impenetrability contact condition (5.1.a) states that the gap value g has to be

non-negative, i.e. contact events requires for gi = 0, there is no contact for gi > 0, and

gi < 0 represents an illegal state of penetration between the bodies. The second intensility

contact condition (5.1.b) states that the normal traction ti on Γc can be compressive only.

Finally, the third complementarity contact condition or unitary condition(5.1.c) combine

57
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the first and second condition in form of a product stating that if the gap value is positive

than there is no contact forces, or if the gap value is positive than contact occurs with

compressive traction ti.

 





Figure 5.1.: Two bodies in contact: domains ΩA and ΩB , bounded by ΓA and ΓB

with the contact surface Γc.

The non-linear nature of contact between deformable bodies requires an incremental so-

lution (Carpenter et al., 1991; Anderheggen et al., 1993). In each time increment ∆t

contact simulation is performed in two computational stages. (1) Since the previously

introduced equation of motion (see equation (2.30.)) can not recognise FE mesh bound-

ary interactions, a new procedure has to be employed to monitor the deformation path

and to notify if contact occurs. (2) After the localisation of the mesh regions in contact,

forces on the interface have to be determined according to contact mechanics. The first

stage which involves kinematic aspects is known as contact detection stage while the sec-

ond which involves mechanical aspects is known as contact resolution stage. Both stages

are covered in the following sections.

Only contact between two bodies (FE meshes) discretised with linear tetrahedrons will

be considered here. For this purpose several terms will be introduced to simplify the

description of the contact detection and resolution stage (see Figures 5.3. and 5.4.).

It is common practice to name the two bodies in contact as master and slave and the

related FE discretisations as master and slave discretisation. In this manner, nodes on

the boundary of the slave FE mesh are called slave nodes, and nodes on the boundary

of the master FE mesh are called master nodes. Master nodes belong to the boundary

elements which are are all the elements which have at least one node on the boundary.

Boundary surfaces, or master surfaces, are all triangles on the boundary of the master FE

discretisation, i.e. they are formed by three master nodes belonging to a single boundary
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element. The nodes involved in the contact form contact elements. They consist of

one slave node, called contractor node, and the respective master surface, called target

surface.

 
contractor nodes 

target  

surface 

Figure 5.2.: Two bodies in contact (master body - blue and slave body - red) with
an illustration of two contact elements (two contractor nodes shearing the same target
surface).

The lists of boundary nodes, surfaces and elements have to be formed only once, before

the start of the incremental analysis. Then, in each time step contact detection and

contact resolution phase is performed with one body as the slave body and the other as

the master body. After that, but before proceeding to the next time step, the master-slave

associations are switched between the meshes and a second contact detection and contact

resolution phase is performed. In order to maximise the computational efficiency, it is

possible in some particular cases to omit the second contact analysis without affecting

the accuracy and stability of the entire procedure.

5.2. Contact detection

The first part of the contact analysis is the contact detection stage which has the purpose

to identify contact constraints violations and if so, form contact elements. It is split into

the global and local detection phase (Carpenter et al., 1991; Heinstein et al., 1993). The

global detection phase has the purpose to determine if any of the boundary nodes of the

slave body penetrated into one of the boundary elements of the master body. This phase

finishes with a list of these nodes called contractor nodes. Next, in the local detection

phase, every contractor node has to be matched with the corresponding target surface,

along with the time and position of their intersection. This forms the list of contact

elements for the resolution phase.
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5.2.1. Global detection

At the end of each time increment the mesh boundaries should be separated and thus

fulfilling the impenetrability condition. However, at the beginning of the next time in-

crement new incremental nodal displacement ∆u are calculated according to the explicit

time integration previously introduced. At this point it is possible that some of the

boundary nodes found them selves in an non-physical position. These nodes are identi-

fied in the global detection stage by a performing a procedure based on the point in a

polygon test.

 

 Slave body

Master body 

 boundary nodes
b
ou

n
d
a
ry

 elem
en

ts 

Figure 5.3.: Simplified 2D representation of a master and slave body with the respec-
tive boundary elements and nodes for contact analysis.

As was previously discussed, the barycentric coordinates ξ of a point P are positive if the

point is inside the element domain (see Section 2.1.1.) and their sum is equal to 1. Based

on this fact the global detection phase can be performed as follows. First, a computational

loop is started over nbn slave boundary nodes with coordinates (xc, yc, zc) and then a

second loop is started over nbe master boundary elements checking for penetration using

equation (2.2.):

for node = 1, 2, ..., nbn

for element = 1, 2, ..., nbe

ξ(xc, yc, zc) =(αeli + xcβeli + ycγeli + zcδeli ), for i = 1, 2, 3, 4,

(5.2.)

where the coefficients αeli , β
el
i , γ

el
i and δeli are given in equation (2.7.). If all the coordi-

nates (volumes) are positive than the point will be inside the element domain indicating

penetration.
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The used strategy is very simple and robust, but also very expensive. To reduce the

computational time the list of all possible contractor nodes should be reduced to region

in which the contact is anticipated which is not always possible. Some of this aspects

are discussed in the following chapter.

5.2.2. Local detection

After obtaining the list of contractor nodes in the global detection stage, the local detec-

tion stage is started. A detailed search is performed to find the matching target surface

for each contractor node along with the position and time at which the contractor hit

the target surface.

The position of contact is needed to distribute the magnitude of contact forces λ over

the three target plane nodes of the corresponding surface of the 3D finite element and

the contractor node that hit the plane. For this purpose the coordinates of contact are

expressed in terms of element local coordinates ξ (Wriggers, 2002), see Figure 5.4. The

corresponding unit vectors are t1 and t2 with the normal vector n = t1×t2. By knowing

the coordinates of contact {ξ1, ξ2}, the force distribution is conducted by multiplying the

contact force vector λ with the contact matrix G structured as:

G =


N1(ξ) 0 0 N2(ξ) 0 0 N3(ξ) 0 0 −1 0 0

0 N1(ξ) 0 0 N2(ξ) 0 0 N3(ξ) 0 0 −1 0

0 0 N1(ξ) 0 0 N2(ξ) 0 0 N3(ξ) 0 0 −1

 (5.3.)

in which N(ξ) denotes the target plane node shape function. As can be noted, matrix

(5.3.) implies force equilibrium by specifying that the sum of components in each row

is equal to zero (since the sum of local coordinates is always 1). The problem is now

reduced on identifying the coordinates of intersection {ξ1, ξ2}, i.e. on estimating the

contact coordinates at which the contractor node hit the target plane.

The continuous collision detection strategy is invoked to obtain the local coordinates of

intersection {ξ1, ξ2} (Hutter and Fuhrmann, 2007). Particularly, for a given contractor

node, the strategy establishes the time of contact tc at which the node hit the target

surface. The strategy is based on the geometrical and kinematical properties of nodes

involved in contact. Particularly, by assuming that the nodal velocities v does not change

between time level n and n+ 1, the strategy will reveal if and when the contractor node

hits the candidate boundary surface. The idea is based on the fact that at the time

of collision tc, the four nodes are coplanar. Provot (1997) showed that for four points

defined by the position vectors xn and constant velocities vn, the time tc at which the
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Figure 5.4.: Local detection of contact

points are coplanar satisfy the following:

(x21 + tcv21)× (x31 + tcv31) · (x41 + tcv411) = 0 (5.4.)

where xij = xi − xj and vij = vi − vj . Since the nodal coordinate vectors xn and

velocities vn at a time tn are known (reference frame), in order to solve equation (5.4.)

the monomial form of the polynomial is needed. By extending the differences in equation

(5.4.) and grouping the outcome by means of tc, the solution is obtained by 188 additions

and 192 multiplications. From the perspective of execution time, it is obvious that this

computation requires considerable computational effort. However, the polynomial can

be computed by only 50 additions and 48 multiplications, provided that the coefficients

are grouped and rewritten as dot-products and cross-products (Hutter and Fuhrmann,

2007): a3 = v21v31 × v41, a2 = x21v31 × v41 − v41x31 × v21 − v21x41 × v31, a1 =

v41x21 × x31 − x21x41 × v31 − v21x21 × v41 and a0 = x41x31 × v21. The time in which

the points are coplanar represents the real roots of the cubic polynomial in time:

P (tc) = a3 t
3
c + a2 t

2
c + a1 tc + a0 (5.5.)

The time of collision is equal to the result with the lowest real value. This value must

also be positive, and in the range of the adopted time increment. Otherwise, the proce-

dure skips to the next candidate. If a legal value for the time of collision is found the

corresponding position is calculated. Note that the local coordinates of intersection must

be positive and in the range between 0 and 1, which assures that the contractor node is

inside the target surface at the moment of impact.
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Since a typical numerical analysis consists of a considerable number of small time in-

crements, the robustness and efficiency of the local strategy is crucial for the analysis

to be successful. A false detection, or no detection will likely result in a unrecoverable

error. Serious difficulties in the computation of tc can arise from the the fact that nodal

movements can be in the order of magnitude as the computational round-off errors. For

this purpose all the variables must be declared to be double presision (REAL 8) which

increase the computational time.

Because of the difficulties discussed above, it is prudent to have an additional safety

procedure which will be invoked only if the main strategy fails. This strategy is based

on the idea that the volume of the element formed by the contractor node and the target

surface has a non-positive value at the start of the increment, a non-negative value at

the end of the increment, and exactly zero at the time of collision. The volume changes

are linear so tc can be easily computed. This procedure is simple and effective, but not

so precise as the main procedure.

5.3. Contact resolution

To include the influence of contact forces between the FE meshes in the dynamic equi-

librium equation (2.30.), the forward incremental Lagrangian multipliers method is used

(Carpenter et al., 1991). In mathematical optimization problems, this method is used

for fining local maxima and minima of a function subjected to equality constraints. Con-

sider a two-dimensional optimisation problem presented in Figure 5.5.: maximise f(x, y)

subject to g(x, y) = c. For this purpose a new variable λ is introduced called a Lagrange

multiplier. The Lagrange function is then defined by:

Λ(x, y, λ) = f(x, y) + λ(g(x, y)− c (5.6.)

If f(x0, y0) is a maximum of f(x, y) for the constrained problem, then there exists λ0

such that (x0, y0, λ0) is a stationary point for the Langrange function, i.e. the partial

derivatives of Λ are zero.

For the present contact analysis Lagrange multipliers λ represent contact forces with the

constraint condition being the impenetrability condition. Accordantly, equation (2.30.)

obtains the form:

M ün + C u̇n + f int
n + GT

n+1λn = f ext
n , (5.7.)
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solution 

Figure 5.5.: Optimisation problem: find x and y to maximise f(x, y) subject to a
constraint g(x, y)

where the unknown displacement vector u in the time step n + 1 should meet the im-

penetrability condition given in the form:

Gn+1 {un+1 − un + X} = 0. (5.8.)

By analysing equations (5.7.) and (5.8.) it can be seen that the Lagrange multipliers

are calculated at n, while the displacement constraint is set at n + 1. Hence the name

forward Lagrange multiplier method.

As was previously discussed, the unknown displacement vector u in a time level n + 1

is obtained as follows. At the beginning of each time step it is assumed that there are

no mechanical interactions between FE meshes in the reference configuration defined by

coordinates vector X. In other words, by temporarily ignoring the influence of contact,

the computation start with the contact predictor stage where the nodal displacements

are calculated with respect to the classical explicit update (2.34.). The computation

proceeds with the global contact detection algorithm. For those nodes that violate the

impenetrability condition and penetrate in a forbidden mesh domain, the local detection

algorithm is activated. The algorithm localizes the position of contact ξ which is needed

for assembling the contact matrix Gn+1 (5.3.). Once the contact detection procedures

are executed, the correction of the previously calculated displacement field (2.34.) is

performed by adding the contact displacement contribution. For this purpose, the contact

forces λn are determined according to:

λn =
[
∆t2 Gn+1 M

−1 GT
n+1

]−1
Gn+1 {uD

n+1 − un + X}, (5.9.)

where uDn+1 is the displacement predictor calculated according to the standard explicit

update (equation 2.34.) ignoring contact. In order to prevent non-physical penetration,

the contact displacement vector uC is calculated by distributing the contact forces λn

among the nodes involved in contact. Depending on the position of contact ξ the contact
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displacements uC at time level n + 1 are calculated as:

uC
n+1 = −∆t2 M−1 GT

n+1 λn. (5.10.)

At time level n + 1 the total nodal displacements un+1 are calculated as:

un+1 = uC
n+1 + uD

n+1. (5.11.)

The briefly illustrated procedure can be very efficiently executed by Gauss-Seidel itera-

tion strategy (Carpenter et al., 1991). During the Gauss-Seidel iterative procedure the

coordinates of nodes in contact are progressively updated employing (5.11.). According

to that, it has to be mention that there are situations in which the iterative procedure

will put the contact node outside the penetrated domain. In that case, the next iteration

loop will tends to pull back the node to the position of intersection, provoking tensile

contact reaction. Obviously, this scenario cannot happen at the soil-structure interface

and the node under consideration should be released from contact. It follows that the

contact force components should be progressively monitored to include the nodal sepa-

ration. For this purpose, note that λ in (5.9.) is given in respect to global coordinate

system. In order to test the normal component λN for tension, λ should be transformed

into local coordinates of the belonging contact surface. Since the contact surface is here

always flat, the normal component λN can be defined as (λ · n)λ where n denotes the

target plane normal vector. If the force λN denotes tension, the nodal separation is

simply reproduced by setting λN equal to zero.

Apart the normal reaction force λN, the allowed limit of tangential component λT is

also prescribed by the assumed frictional constitutive model. Particularly, the Coulomb

frictional model is here employed to differentiate the stick from the slip contact condition.

To perform the tangential check force limit, the force component λT should be obtained

from λ and the related target surface vectors aα and aβ . The computation involves basic

vector algebra as λT = (λm) ·m + (λk) · k where the projection vectors m is defined as

(Wriggers, 2002):

m =
aα
‖aα‖

(5.12.)

and vector k is given by:

k =
aβ − (aβ ·m) ·m
‖aβ − (aβ ·m) ·m‖

(5.13.)

Once the force component λT is known the influence of friction can be quantified. In

other words, after calculating the contact force vector λ the obtained force is decomposed

into its normal λN and tangential part λT. The computation proceeds with checking the

nodal tendency for contact separation (if ‖λN‖ > 0 then λN = 0) which is in accordance

with the Coulomb frictional model where the tangential force λT depends on λN. It
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is clear that if the node establishes tension load, further checking will not be required

since the node will be released from the contact. On the other hand, if the tensile force

is not present, the tangential force components have to be tested for eventual sliding

contact condition. By computing the relative tangential displacement vector gT, at the

numerical implementation level the tangential force λT is subject to the condition (Ling

and Stolarski, 1997; Wriggers, 2002):

if ‖λT‖ > µ λN then λT = −µ ‖λT‖
ġT

‖ġT‖
, (5.14.)

in which µ is the friction coefficient defined by the static µS and dynamic friction coeffi-

cient µD through the function:

µ(ġT) = µD + (µS − µD) exp(−c ‖ġT‖), (5.15.)

in which c represents a parameter that defines how fast is the transition from µS to µD.

The condition (5.14.) is activated for each contractor node after the computation step

in equation (5.9.). Note that if the tangential force component λT has been modified

(according to the assumed frictional constitutive description), a new respective contact

force λ should be computed before moving onto the next iterative cycle.

Finally, it ought to be mentioned that during the Gauss-Seidel iteration cycles the com-

ponents of the displacement constraint matrix Gn+1 (5.3.) are not alternated. However,

if the numerical simulation is characterized by large slings, the matrix components will

vary due to the sliding of contractor nodes along target surfaces. For this purpose, even

if a very small time increment ∆t is adopted, which will consequently produce a rela-

tively small incremental nodal displacements, it would be convenient to calculate Gn+1

at the beginning of each Gauss-Seidel iteration process or at the beginning of each time

increment.

The k to k+ 1 Gauss-Siedel iteration is summarized in equation 5.16. with the following

special notation. The upper left superscripts in displacement and force terms represent

the current iteration, i.e. kuin represents the displacement of contractor i, at time n at

the beginning of iteration step k, while k+1uin the respective value at the end of the same

iteration. The difference between the two is ∆ui. The current estimate of uin+1, during

iteration k to k+1, is k,k+1uin+1. In each iteration a loop is performed over all contractor

nodes i, with nc being the number of contractor nodes. For the first iteration ∆uc, ucn+1,
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∆λ and λn are set to zero.

for i = 1, 2, ...,nc (5.16.a)
k,k+1gi = Gi

n+1{Xn + uDn+1 + uCn+1} (5.16.b)

∆λi =

[
∆t2Gi

n+1M
−1
(
Gi

n+1

)T
]−1

· k,k+1gi (5.16.c)

k+1
λin =

k
λin + ∆λi → friction model (5.16.d)

∆uc = −∆t2M−1
(
Gi
n+1

)T
∆λi (5.16.e)

k,k+1ucn+1 ←
{
k,k+1ucn+1 + ∆uc

}
(5.16.f)

After the last step in (5.16.) a convergence test has to be performed:

‖∆λ‖ < tol‖ i+1Λn‖. (5.17.)

An simple example of contact analysis is illustrated in Figure 5.6. An elastic sphere

collide with a rigid flat surface with the friction coefficient µ set to 0 and 1.
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Figure 5.6.: Collision of a sphere with a flat rigid surface: (a) left column µ = 0, (b)
right column µ = 1.

In case of µ = 0, i.e. no friction, after impact the sphere continues on its trajectory with

no rotation and throughout the impact the deformation of the sphere is symmetric. On
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the other hand, when µ = 1, the friction cause the sphere to rotate. The transformation

of energies for both cases is shown in Figure 5.7. In the first case (no friction) there is no

energy loss, while in the second case, the dissipation of energy due to friction is evident

throughout the impact time, resulting in the decrease of sphere speed (kinetic energy).
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Figure 5.7.: Collision of a sphere with a flat rigid surface: (a) left column µ = 0, (b)
right column µ = 1.



Chapter 6.

Computer program structure and

computational aspects

6.1. Computer program structure

The primary objective of this thesis was the development and application of an original

computer program for three-dimensional non-linear dynamic analysis of site and struc-

ture response with emphasis on SSI. The programme code was developed in Fortran95

program language with PGI Visual Fortran (PGI, 2010). Femap (Siemens, 2009) was

used as a pre-processing tool (3D modelling and FE mesh generation) and Para View

(Kitware, 2012) as a post-processing tool (data processing and visualisation). See Figure

6.1.

 

 

 

PROCESSING POST-PROCESSING 

PRE-PROCESSING 

PGI Visual Fortran 

Figure 6.1.: Pre-processing, processing and post-processing tools and their connection.

The program itself consists of 96 source files containing more then 7,000 code lines. The

structure of the program can be explained by taking a look at the main program file

main.f90, see Listing 6.1. At the very beginning of the main file is the information on

the current program version. Next, there are two blocks of sub-routines: (1) the initiali-

sation block (lines 7 to 23), and (2) the main loop for the incremental analysis (lines 26

69
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to 49).

1 PROGRAM _main

2 USE MOD_DATA

3 IMPLICIT NONE

4
5 Ver = "EQ .30.10"

6
7 CALL INI

8 CALL ini_DATA

9 CALL ini_MESH

10 CALL ini_Time_History

11 CALL ini_MEMO

12 CALL ini_MICROPLANE

13 CALL Damping

14 CALL ELT4

15 CALL ELH8

16 CALL EFT_NFT

17 CALL Dmtx

18 CALL CRITICAL_dt

19 CALL ini_CONTACT

20 CALL EXPLICIT_INTEGRATION

21 CALL Mass

22 CALL INFO

23 CALL START

24
25 !## ########################### LOOP ###

26 2 CALL SOLVER !

27 !----------------------------!

28 CALL CONTACTsolve !

29 !----------------------------!

30 CALL VEL_ACC !

31 CALL Reactions !

32 CALL ENERGY !

33 !----------------------------!

34 CALL DEFORMATION_GRADIENT !

35 CALL GREEN_LAGRANGE !

36 CALL STRESS !

37 CALL Finternal !

38 !----------------------------!

39 CALL ETM !

40 CALL OUTPUT_MC !

41 CALL OUTPUT_PV !

42 CALL OUTPUT_SCR !

43 CALL Recovery !

44 !----------------------------!

45 CALL UPDATE !

46 !----------------------------!

47 CALL TheEnd !

48 !----------------------------!

49 GOTO 2 !

50 !## ########################### LOOP ###

51
52 END PROGRAM

Listing 6.1.: Main file

The subroutines in the initialisation block are executed only once, at the starting of the

program, and before the actual incremental analysis. The ini sub-routines allocate the

needed space in the high-speed memory and read all the input data (material properties,

loads, contact parameters and FE mesh data). The subroutine damping sets the appro-

priate damping factors and builds the damping vector (see equation (7.2.) and Figure

7.2.). Subroutines ELT4 and ELH8 calculate the shape functions for tetrahedral and hex-

aherdal elements, respectively (section 2.1.). EFT-NFT then forms a list of degreees of
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freedom per element and per node. Dmtx forms an elasticity matrix for each material in

the analysis as in (4.3.). CRITICAL_dt calculates the critical time increment according to

(2.43.) and (2.44.) and set ∆t to a lower value by multiplying it with a predefined factor

less than 1. EXPLICIT_INTEGRATION calculates the vectors 0−∆tui or 0−∆tu̇i depending

on whether the central difference or leap-frog method was chosen according to equations

(2.37.) and (2.41.). INFO writes a file containing all parameters for the current analysis

for user reference. And finally, START calls the welcome screen shown in Figure 6.2. The

welcome screen of the program shows the calculated critical time step and the adopted

time step, the program version, and offers four choices: (1) start of a new analysis, (2)

read the input data from a previously performed static analysis, (3) read the input data

from a previously performed dynamic analysis, and (4) continue a previously started

analysis (form the backup location). After selecting one of the options, it is required to

enter a number of increments and then the analysis starts.

 

Figure 6.2.: Welcome screen of the program

After the initialisation block is over, the main loop for the incremental analysis is started

for a prescribed number of increments. The loop starts with the subroutine SOLVER

which computes the displacement vector according to the chosen integration method as

in (2.38.) or (2.41.). If the analysis includes a contact problem then the subroutine

CONTACTsolve is called. It is performed as one or two-pass algorithm in three stages:

global detection, local detection and contact resolution. When the new displacement

vector is finally computed, subroutines VEL_ACC, Reactions, and ENERGY compute the

velocity and acceleration vectors, reactions if needed, and potential, kinetic and strain
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energy for the current time step. DEFORMATION_GRADIENT compute the deformation gra-

dient for every element in every Gauss point according to (3.13.) and optionally performs

its polar decomposition. GREEN-LAGRANGE computes the Green-Lagrange strain tensor

as in (3.18.). For the imposed strains increments STRESS computes the coresponding

stresses according to one of the included material descriptions (elastic, plastic or mi-

croplane model). Finternal computes the vector of internal forces by integrating the

stresses as in (3.26.). ETM estimates the time remaining till the end of the analysis based

on progress so far. Subroutines OUTPUT_MC and OUTPUT_PV writes all selected output data

for the current increment formatted for MathCAD and ParaView programs. OUTPUT_SCR

writes the basic analysis information on screen for user control. RECOVERY is called spo-

radically to perform a back-up of the current progress. Finally the subroutine UPDATE

update the displacement and velocity vectors for the explicit integration, and strain

vectors for the stress analysis in the next time step. When the number of prescribed

increments is reached TheEnd writes on screen a summary of the performed analysis with

the options to continue the analysis by entering an additional number of increments or

save the progress.

6.2. Computational aspects

Any non-linear numerical analysis of site response and SSI is always challenging because

inevitably involves large and complex models requiring considerable computational effort.

Consequently, the problem of computational efficiency merges naturally. Both numerical

studies here presented are computationally demanding, but involve different challenges.

This section covers several computational aspects of the program implementation and

briefly discusses the benefits and disadvantages of the chosen numerical approach.

The first numerical study involves a very large model (ground representation) which is

by itself computationally demanding. Nevertheless the most expensive routines are those

involving the microplane model. The application of such an expensive model can be easily

justified by a very accurate representation of concrete which allows a three-dimensional

damage and fracture analysis within the smeared crack approach. In this sense, such

approach is superior to the classical structure representation using beam elements.

The second numerical study involves a much smaller model, the considered structure is

simplified and treated as elastic, but the computation is nevertheless equally demanding.

Namely, the computational challenge lies in the effective implementation of the contact

mechanics procedures. The contact procedure, as previously discussed, consists of three

stages: global detection, local detection and contact resolution. Contact resolution is

effectively performed using the Gauss-Siedel iteration procedure shown in (5.16.). Since
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the adopted procedure resolves contact elements independently, the computational time

is proportional to the number of contacts and the convergence is linear. The adopted

local detection strategy is equally effective. The most time consuming stage by far, which

makes the contact procedure expensive overall, is the global detection. In a general case,

like the one shown in Figure 5.6., it is impossible to predict all the contractor nodes in

advanced so the detection procedure must be general. But, in the case of the considered

problem, the contractor list can be known in advanced. Also the list of potential target

surfaces can be narrowed down to a small area around the foundation. In this way, the

computational time is dramatically shortened. Obviously, that means that an eventual

complete overturning of the structure would not be detected. In that case a general

detection should be employed.

One of the most important choices in the process of approaching these problem was the

selection of method of solving the dynamic equation of motion. Namely, there are several

reasons why the dynamic equation of motion is integrated in an explicit manner rather

than using an implicit version. It should be noted that the explicit time integration is

found to be more appropriated to simulate the process of cracking in the concrete than

the implicit ones. Namely, opening of new cracks (and their closure) happen in a in a very

short period of time. Consequently, a very short time increment is needed to be able to

capture these effects in a proper manner which automatically makes implicit schemes less

attractive. Additionally, for the microplane material model, the computation of the local

tangent matrix will be more expensive than retriving the stresses from the given strains,

which is the case in the explicit time integration. The same can be concluded for the used

plastic model for the soil. It is interesting to note the memory requirements for an implicit

solution. The actual stiffness matrix in its original form is just too big for any practical

purpose. In the actual computer solution, the stiffness matrix has to be condensed in

a one-dimensional array containing only element on the main diagonal and all non-zero

elements above the diagonal of the original matrix. Even in this condensed form (for the

presented problem, see Figure 6.3.), the stiffness “array” contains approximately 1.5 · 109

elements which in double-precision format takes 11.0 GB of storage space.

Since the solution in the explicit schemes can be carried out on the element level, little

high-speed storage is needed and systems of very large order can be solved effectively.

For the presented problem, the entire high-speed memory demand is approximately 300

MB. However, to obtain a stable numerical solution, the adopted time step ∆t has to

be smaller than the computed critical one ∆tcr. For the first numerical study, a uniform

time step of 6.25 µs is adopted. A small time step is not needed only for ensuring the

stability of the solution, but also, as noted above, to be able to capture the cracking of

the concrete, which happens in very short period of time.
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Figure 6.3.: The stifnness matrix topology and its condensed vector form

As was discussed in Section 2.2.2. explicit methods are viable methods only when a

lumped mass matrix can be assumed. Additionally, for solving (2.30.) there is no need

for the assemblage of the stiffness matrix (the internal forces are are computed by stress

integration on element level). Consequently, the damping matrix C cannot be related

to the stiffness matrix, but should be defined as βM where β is a real number (Wilson,

1995) which is an approximation needed for preserving computational efficiency.

In both numerical studies, before starting the dynamic analysis, the initial field of defor-

mations and stresses has to be obtained by performing a static analysis. For practical

purposes, the static analysis is replaced with a dynamic analysis with critical damping.

This approach is much more computationally efficient, especially for the problem in the

first study.

The inevitable issue of computational efficiency can be approached by parallelisation of

the most expensive routines using OpenMP or similar procedures. The idea of paral-

lerisation is to distribute the computation of a non-iterative loops to all available CPU

cores instead of computing them in a serial manner by one core only. An efficient imple-

mentation of OpenMP procedures is not a trivial task and was outside the scope of this

research.
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Numerical studies

7.1. Numerical study 1

This study is based on a series of numerical analyses which include modelling of a rein-

forced concrete frame with a large portion of the ground consisting of various horizontal

layers resting on rigid bedrock (see Figure 7.1.). The ground is modelled as a cylinder

60 m deep with a diameter of 120 m. The cylinder consists of two layers, each with a

thickness of 30 m. The FE discretisation of the ground is shown in Figure 7.1.a (up-

per level is shown in orange and the lower layer is shown in dark grey). The ground is

discretised with tetrahedral elements while the structure is modelled employing hexahe-

dral elements. The input motion is applied in the bottom nodes of the cylinder in the

form of an accelerogram in the desired horizontal direction which generates vertically

propagating shear waves. These waves travel from its source (at the bedrock) through

different ground layers, finally reaching the surface. They reflect from the surface back

to the rigid bedrock, which also acts as a perfect reflector. Through time, they super-

impose themselves with new waves originating from the source which contributes to the

attenuation or amplifications of the surface wave amplitudes.

Ground types used in the present study are rock masses with properties shown in Table

7.1. These parameters were determined using RocLab (Rocscience, 2002) which is based

on the Hoek–Brown failure criterion (Hoek and Diederichs, 2006).

The Hoek–Brown failure criterion is widely used for determining input parameters for

analysis of rock mass behaviour. It consists of empirical relationships for estimating

parameters of an isotropic rock mass deformation modulus based on Geological Strength

Index (GSI) classification scheme and several additional parameters. It also provides

equivalent Mohr–Coulomb or Drucker–Prager input parameters, which were then used

75
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Figure 7.1.: (a) FE model of the ground: upper layer (orange), lower layer (dark grey)
and elastic bottom layer on which is applied the input motion (blue), (b) reinforced
concrete frame discretisation, (c) section of the FE model: concrete (white), concrete
elastic (blue), reinforcement (red), reinforcement elastic (magenta), interface elements
(yellow), ground top layer (orange) and (d) decomposition of the macroscopic strain
vector into microplane strain components - normal (volumetric and deviatoric) and
shear.

Table 7.1.: List of ground types: deformation modulus, uniaxial compressive and
tensile strength, normal and shear wave propagation velocities.

Ground type Erm (GPa) fc (MPa) ft (MPa) vNORMAL (m/s) vSHEAR (m/s)

1 0.610 0.143 0.004 510.6 312.7
2 1.220 0.613 0.013 722.1 442.2
3 2.440 1.290 0.029 1021.1 625.3
4 4.880 2.427 0.062 1444.1 884.3
5 9.760 4.938 0.157 2042.3 1250.6
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in this study. GSI values are estimated from lithology, structure and surface condition

of the discontinuities and have a range between 0 and 100. Rock mass deformation

moduli are calculated varying the geological strength index (GSI) from 10 (laminated,

sheared structure with poor surface condition) to 60 (blocky structure with fair surface

condition). Starting with the softest ground type 1 (Erm = 0.610 GPa), the rock mass

deformation modulus is doubled in each subsequent step to the stiffest ground type 5

(Erm = 9.760 GPa). In this way, a large span of rock mass stiffness is covered. Note

that the stiffness ratio between ground type 5 and 1 is 16, while the shear wave velocity

ratio is 4. The described ground types, according to shear wave velocity, would be

commonly classified from type C (180 < vs,30 < 360 m/s) to type A (vs,30 > 800 m/s)

where vs,30 is the average value of propagation velocity of S waves in the upper 30 m

of the soil profiles. Since the density is the same for all considered ground types, the

vertical pressure at the bottom is equal for all investigated models and it has a value

of approximately 1.5 MPa. While the stress distribution is similar for all models, the

strains differ and consequently the total strain energy stored in the system. The strain

energy is then inversely proportional to the ground stiffness.

Varying the ground types for the two layers overlaying the bedrock, a total of 15 different

configurations are considered. The individual configuration is given a name in the form

of Mxy: x standing for the ground type of the upper layer and y standing for the ground

type of the lower layer (see Table 7.1.). The configurations in which the upper layer is

stiffer than the lower layer are not considered.

The described ground configurations are further expanded by placing a reinforced con-

crete structure in the centre of the ground model (Figures 7.1.b and 7.1.c). The structure

is a RC space frame with the following dimensions: height is 2.80 m, the longer span (x

direction) is 4.20 m and the shorter span (y direction) is 2.80 m. The cross section of

the columns and beams are 350 x 350 mm. The columns are based on square footings

1050 x 1050 x 350 mm. Columns and beams are reinforced with four steel rebars with

diameter d = 14 mm. The mass of the beams is increased to account for an extra live

load of 5 kN/m2 applied to the entire area of the frame storey. The total mass of the

frame (without the foundations) is 9973 kg. Assuming linear elastic behaviour, the first

three eigenvalues of the frame are 0.0762 s (x direction), 0.0728 s (y direction) and 0.0581

s (torsion). The mechanical properties of the concrete are: modulus of elasticity Ec =

30 GPa, Poisson’s ratio ν = 0.18, uni-axial compressive strength fc = 45.0 MPa, tensile

strength ft = 2.70 MPa, fracture energy GF = 0.10 N/mm and mass density ρc = 2300

kg/m3. The mechanical properties of the steel reinforcement are: Es = 200 GPa, ν =

0.30, yield strength fyd = 400 MPa and ρs = 7850 kg/m3. The discretisation of concrete

and reinforcement is performed with linear hexahedrons (Figures 7.1.b and 7.1.c). Since

the section of the actual reinforcement is smaller than the area of the elements used to
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model it, the modulus of deformation and the yield strength of the reinforcement were

reduced in an adequate manner to assure an objective modelling. To obtain a more

realistic interaction between the column footings and the ground, a row of non-linear

interface elements were inserted (shown in yellow in Figure 7.1.c). These elements can

take up compressive and but no tensile stresses.

Prior to the dynamic analysis, a static analysis was performed to obtain the initial field

of deformations and stresses indispensable for further dynamic analyses. For the static

analysis, Dirichlet conditions of zero displacements are imposed at the bottom surface

in the vertical direction and at the lateral surface in the horizontal direction (see Figure

7.2.a). In the dynamic analysis, perfect reflection characteristics of such elementary

boundaries can trap the energy in the mesh that in reality would propagate in the radial

direction away from the region of interest resulting in the so-called box effect. To prevent

this effect, on each node of the lateral boundary, a set of viscous dampers (zero length

elements, see Figure 7.2.b) is placed according to Lysmer and Kuhlemeyer boundary

condition (Lysmer and Kuhlemeyer, 1969) expressed by the following equations:

σ = ρ vp u̇n , τ = ρ vs u̇t, (7.1.)

where σ and τ are the normal and shear stress on the boundary, vp and vs are the

velocities of the P waves and S waves in the base material, ρ is the density of the base

material and u̇n and u̇t are the normal and tangential particle velocities at the boundary.

Radiation damping can be derived according to these equations and then applied using

lumped dashpots with the following factors:

Cn,i = a ρ vp

∫
Ni dA, Ct,i = b ρ vs

∫
Ni dA, (7.2.)

where Ni is the element shape function, and a and b are dimensionless parameters. For

small incident values the most effective value for a and b is one. Additionally, the static

pressure at the lateral boundaries obtained from the static analysis is applied on the

respective boundary of the dynamic model. At the start of the dynamic analysis, all

fixed supports on the nodes at the base of the model are removed and a time-history

acceleration is specified. In other words, the motion at the base of the model is completely

prescribed in all three directions according to the specified accelerogram (see Figure

7.2.b).

The earthquake record used in the present study is taken from the Japanese digital

strong-motion seismograph network Kik-net (NIED, 2013) which consists of pairs of

seismographs installed in borehole together with seismographs on the ground surface.

The accelerogram shown in Figure 7.3. was recorded at the Gozenyama site on 11



7.1. Numerical study 1 79

  

 

ü (t) 
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Cn = a  vp  Ni dA 

Ct = b  vs  Ni dA 

Figure 7.2.: Simplified 2D representation of boundary conditions for (a) static analysis
and (b) dynamic analysis.

March 2011 on a borehole seismograph installed on bedrock at an altitude of −62 m

(see Appendix A for more information). Since the used accelerogram does not represent

outcrop motions, but rather “in-depth” motions, the deconvolution analysis is not really

necessary. The numerical analysis is performed for a 2.25 s fragment of the original record

scaled to peak ground acceleration (PGA) of 0.1 g with peak ground velocity (PGV) equal

to 0.05405 m/s and peak ground displacement (PGD) equal to 0.00683 m. The selected

fragment has a mean period of 0.24 s and produces an acceleration response spectrum

with a relative narrow band in the high frequency range. The described accelerogram is

applied at the bottom nodes of the model in the x direction. The elements containing

one or more of these nodes were modelled as elastic (shown in blue in Figure 7.1.(a)).

Figure 7.4. shows the arrival of shear waves to the ground surface for configurations

M11, M22, M33, M44 and M55 in the form of horizontal displacements. The waves are

generated by the input motion described above. Decreasing the ground stiffness (from

M55 to M11) the shear wave velocity decreases taking more time for the wave to reach

the surface. At the same time, the amplitudes and periods of the surface motion increase

in magnitude.

A comparison between considered models regarding PGA, PGV and PGV/PGA is shown

in Table 7.2. The PGA and PGV are very useful parameters for characterising ground

motion amplitudes, PGA providing a more accurate estimation in the high frequencies

range while PGV in intermediate range. The PGV/PGA parameter is often used to char-

acterise the damage potential of the ground motions, i.e. higher values meaning larger
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Figure 7.3.: (a) Full Gozenyama earthquake record, (b) the strongest 2.25 s fragment
used in the analysis and (c) respective response acceleration specrtum.
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Figure 7.4.: Arrival of shear waves at the ground surface (showing horizontal dis-
placements).

damage potential. All mentioned parameters tend to be larger as the ground becomes

softer (see Table 7.2.). Namely, the largest values were obtained for configurations with

the softest top layer. The ratio between the maximum recorded PGA (model M13) and

the minimum recorded PGA (model M55) is roughly four while the stiffness ratio is 16.

The response acceleration spectra for all models are shown in Figure 7.5.a and they

represent peak response values of a SDOF system subjected to the given accelerogram

with a critical damping ratio of 5%. Models are grouped accordingly to the ground

type of the upper level: red for ground type 1, yellow for 2, green for 3, blue for 4 and

black for 5. It can be seen that the models with the top layer of the same ground type
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Table 7.2.: Considered models with resulting PGA, PGV and PGV/PGA ratio.

Model PGA (g) PGV (m/s) PGV/PGA (s)

M15 0.125 0.02705 0.0220
M25 0.107 0.02131 0.0202
M35 0.096 0.01625 0.0172
M45 0.081 0.01171 0.0148
M55 0.042 0.00504 0.0122
M14 0.129 0.03096 0.0245
M24 0.136 0.02311 0.0173
M34 0.114 0.01989 0.0178
M44 0.065 0.01088 0.0171
M13 0.191 0.03733 0.0199
M23 0.117 0.02439 0.0213
M33 0.110 0.01939 0.0180
M12 0.152 0.03506 0.0235
M22 0.121 0.02323 0.0196
M11 0.139 0.03315 0.0243

 (a) (b) 

Period [s] 

R
e

s
p

o
n

s
e

 a
c
c
e

le
ra

ti
o

n
 s

p
e

c
tr

a
 [

g
] 

R
e

s
p

o
n

s
e

 a
c
c
e

le
ra

ti
o

n
 /
 P

G
A

 

0 0.1 0.2 

INPUT 

0.4 0.5 0.6 0.7 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.05 0.10 0.15 0.20 0.25 0.30 0.40 0 

M11 M22 M33 

M44 

M55 

0.3 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

0 

4.5 

5.0 

Figure 7.5.: (a) Resultant acceleration spectra for the models with material 1 (red),
2 (yellow), 3 (green), 4 (blue) and 5 (dark blue) as top layer; response spectra of the
input accelerogram is represented with a dashed black line and (b) Normalised response
spectra for the models with equal upper and lower materials and the response spectra
of the input accelerogram.
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have the acceleration response spectra grouped closely together. The ground type of

the top layer has a great influence on ground motion characteristics while the ground

type of the bottom layer has only a minor influence. Maximum amplification of accel-

erations (ground/bedrock) is observed for the model M13 (1.91) while the maximum

de-amplification is observed for model M55 (0.42). Figure 7.5.b show normalised accel-

eration response spectra for models M11, M22, M33, M44 and M55 and for the input

accelerogram. It can be seen that softer sites amplified the medium-range bedrock fre-

quencies more than stiffer sites. Similarly, the stiffer sites amplified high-range frequen-

cies more than softer sites. It is important to note that the non-linear behaviour of soil

makes the amplification dependent on the bedrock motion magnitude, i.e. stronger mo-

tion causes more non-linear behaviour which generally reduces the amplifications. Since

the bedrock is assumed to be perfectly rigid, the incoming waves reflected from the sur-

faces will again be perfectly reflected from the bedrock, i.e. there is no loss of energy.

More accurate modelling would regard the bedrock as elastic. This would mean that

only a part of the incoming wave would be reflected and the other part would continue

travelling downward (radiation damping). The transmitting wave removes energy from

the soil deposit and makes its response to be lower than it would have been for the

case of rigid bedrock. For some soft rock sites, rigid bedrock assumption can lead to

overestimation of amplification effects.

The response of the RC frame for the model M33 is shown in Figure 7.6.. The displace-

ments, velocities and accelerations (ground, storey and relative) in the x direction are

shown in Figures 7.6.a, 7.6.b and 7.6.c, respectively. Total base shear history is shown in

7.6.d and energy transformations are shown in 7.6.e. Reactions of the individual columns

for all three directions is shown in Figure B1. in the Appendix B.

The shear waves propagate 60 m from their source to the surface in 0.1 s. After 2.4

s the surface ground motion practically stops and the structure continues to oscillate

freely. Maximum recorded acceleration of the storey is 0.56 g while the PGA is 0.11 g.

The maximum base shear is 55 kN. The energy of RC varies through time between 3 (in

resting) and the maximum of 24 J. Cracking of concrete cover is observed in the base of

the columns and beams while the reinforcement remains elastic.

Figures 7.7.a and 7.7.b shows the energy transformations in the entire system during the

analysis. The total and the strain energy practically coincide because the kinetic and

potential energies are of much lower magnitude. Namely, the total energy varies between

97 and 105 MJ while the kinetic energy varies between zero and 0.3 MJ. The induced

earthquake motion raised the total energy of the system by approximately 10 MJ. As

expected, it can be seen that the contribution of the potential energy in the total energy

of the system can be neglected.
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Figure 7.6.: (a) Displacements, (b) velocities, (c) acceleration history, (d) total base
shear, and (e) energy transformations for the considered RC frame (model M33).
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Figure 7.7.: Energy transformations in the entire system for model M33.
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Additional simulations were performed considering the structure linear elastic with SSI.

Structural response resulting from a linear elastic analysis with initial stiffness is shown

in Figure 7.8.. Although the selected input motion is relatively low in magnitude, the

difference in the structural response in regard to non-linear analysis is evident. Non-

linear effects, i.e. structure stiffness degradation, lead to lower natural frequencies of

the structure. Thus, as can be seen from the acceleration response spectra in Figure

7.5., even a small difference in the fundamental period of oscillation can have a major

effect on the structural response. Prolongation of the fundamental period is not only

caused by structural degradation (cracking of concrete, yielding of reinforcement), but

also because of ground non-linearity around the foundation and the applied interface

between the foundation and the ground. Described phenomena, which are accounted for

in the proposed model, are of crucial importance for a realistic response. Moreover, in the

design practice, it is usually assumed that a simpler linear analysis is more conservative

than an advanced non-linear analysis. This assumption is not generally true, which

means that accounting for all non-linearities does not necessarily mean that the demand

on the structure will be lower. The scope of advanced methods is not only to design

more economical structures, but also to identify weak spots which cannot be detected

when employing a relatively simple method of analysis.
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Figure 7.8.: (a) ground and storey and (b) ground and relative displacements for the
considered RC frame (model M33) resulting from non-linear and linear analysis with
initial stiffness.

The original input motion was increased in magnitude by a factor of 5 to induce more

damage on the RC structure. A typical failure mode of the considered structure in the x

direction is shown in Figure 7.9.. The cracking of the concrete (red zone) is represented by

means of maximal principal strains. For this purpose, it is assumed that the critical crack

opening wcr is 0.2 mm, which corresponds to the critical strain εcr = wcr/he = 0.004,

where he is the average element size (50 mm). Yielding of reinforcement is shown in

red. First, cracks in the concrete appear at the base of the columns. Cracks in the
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longitudinal beams follow: in the upper zone of the section on one side and in the lower

zone on the other. The cracking progression in the members of the RC frame is shown

in Figure B3. and Figure B2. shows the time-history of the principle stress σzz for an

individual element in the cracking zone (see Appendix B).

Maximum total base shear of the frame reached 120 kN while the strain energy was

136 J. Furthermore, it would be possible to continue the simulation and to assess the

performance of such a damaged structure to a future aftershock.

Figure 7.9.: Failure mode of the RC frame.

Minimal element size was set to 50 mm resulting in a mesh with approximately 120,000

elements and 180,000 degrees of freedom. It should be noted that the RC frame structure

takes half of these degrees of freedom. It is the minimum number of nodes (and degrees

of freedom) that allows a reasonable three-dimensional geometrical representation and

modelling of cracking of concrete. It is obvious that for more accurate results, a finer

mesh should be employed, especially regarding the structure response. However, any

reduction in element size would dramatically increase the computation time. Namely,

the critical time step decreases proportionally to the reduction while the number of

elements increases by the third power. Alternatively, instead of three-dimensional solid

elements, for the frame structure, beam finite elements could be used. However, in

such case, information related to strain rate, crack velocity or change of failure mode
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due to high loading rate cannot be accounted for. A more in depth discussion of the

computational aspects is given in Chapter 6.

The entire dynamic analysis took eight days on a personal computer equipped with

a single Intel i7 processor running the code in serial (480.000 increments for 3.0 s of

actual time). From the computational point of view, the most expensive procedure is

by far the stress calculation in the concrete elements (integration is performed over 21

microplanes in each of the eight gauss points of each hexahedral element). This high

computational cost is justified by a very accurate representation of concrete and allows a

three-dimensional damage and fracture analysis within the smeared crack approach. The

accuracy of the results is affected to a certain degree by a relatively coarse discretisation

of the cross sections of the frame elements. But, as discussed above, a finer discretisation

comes at a cost of significant increase of computational time.
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7.2. Numerical study 2

This study examines the influence of a contact discontinuity between the soil and the

structure. A series of numerical analyses were performed by varying the ground motion

intensity (by setting the PGA of the selected accelerogram) and for different coefficients

of friction µ. To emphasis the contact discontinuity in the presented numerical examples

the structure is founded on a flat ground surface. Namely, in this case almost all of the

seismic energy will be transferred through the contact discontinuity by friction forces.

A minor part of the energy will be transferred by normal forces, i.e. by ground eleva-

tion. The emphasis is on the physics of the soil – foundation system in the perspective

of two important interconnected non-linear mechanisms: (1) foundation sliding and/or

detachment from the soil with subsequent uplifting and (2) formation and accumulation

of plastic deformations in the ground below the footing. The interaction of these mech-

anisms can eventually lead to collapse by dynamic instability (overturning) or collapse

by soil failure.

In order to simulate the energy transfer mechanism through the contact discontinuity

and to account for the frictional energy dissipation on the same interface, contact be-

tween different FE discretisations (bodies) has to be considered. The procedure is based

on satisfying the Karush-Kuhn-Tucker conditions of optimality (Wriggers, 2002). Ac-

cordingly, in each time increment ∆t the contact analysis requires two different tasks

to be solved. (1) Since the contact event is evident in mesh boundary interactions and,

on the other hand, the introduced equation of motion (2.26.) cannot recognize contact

events, an exterior computational procedure is needed to monitor the deformation path

and to notify if contact between meshes (bodies) occurs. (2) By identifying and local-

izing mesh contact regions, the description of forces over the contact interfaces should

be given according to the principles of contact mechanics (Wriggers, 2002). These two

procedures can be classified as contact detection and contact resolution stage. The stages

are principally different and are discussed in detail in Chapter 5.

The structure analysed in the present study is a concrete column on a square footing

1.60 x 1.60 x 0.50 m. The cross section of the column is 0.36 x 0.36 m and the height

of the column is 2.88 m. An additional block is placed on the top of the column with

the dimensions 0.96 x 0.96 x 0.42 m The mass of the block is increased to account for

an extra live load of 37.15 kN. The total mass of the structure is then equal to 9010

kg. Assuming linear elastic behaviour and the fix end boundary the first 3 eigenvalues

of the column are 0.276 s (x direction), 0.276 s (y direction) and 0.099 s (torsion). The

mechanical properties of the concrete are: modulus of elasticity Ec = 30 GPa, Poisson’s

ratio µ = 0.18 and mass density ρc = 2400 kg/m3.
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The dimensions of the portion of the ground taken into account are 10 x 10 m in plan and

5 m in depth, which is more than enough for the so called pressure bulb to form. Ground

type used in the present study is a soft rock mass. The generalized Hoek-Brown strength

parameters and rock mass parameters were determined using RocLab (Rocscience, 2002)

with the following input data: unconfined compressive strength of intact rock sigci = 50

MPa, intact rock parameter mi = 14, disturbance factor D = 0 and modulus ratio value

MR =400. Rock mass deformation modulus Erm has the value of 0.610 GPa and is

calculated according to the generalized Hoek-Diederichs equation (Hoek and Diederichs,

2006) with the geological strength index (GSI) equal to 10 (laminated, sheared structure

with poor surface condition). The uniaxial compressive fc and tensile strength ft are

0.143 and 0.004 MPa, respectively. The described ground type, according to shear wave

velocity alone (312.7 m/s), would be commonly classified to type C (180 < vs,30 < 360

m/s).

The discretisation of the ground and the foundation is performed with linear tetrahedrons

and the rest of the structure with linear hexahedrons. The total number of elements is

14747 and total number of nodes is 7613. The bottom surface of the footing is discretised

with 49 nodes (7x7). These nodes are potential contractor nodes, which with the respec-

tive target surfaces make contact elements. The FE discretisation is shown in Figure

7.10.a.

 

96 x 96 x 42 cm 

36 x 36 x 288 cm 

160 x 160 x 50 cm 
1000 x 1000 x 500 cm 

(a) Geometry of the structure.

 

(b) Model in the initial state.

Figure 7.10.: 3D FE model of the structure in the second study

The earthquake record used in the present study is taken from the Japanese digital strong-

motion seismograph network - Kik-net NIED (2013). The numerical analysis is performed

for a 4.00 seconds representative fragment of the original record scaled to PGA of 0.1g
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(PGV = 0.05405 m/s, and PGD = 0.00683 m), see Figure 7.3.. The selected fragment

has a mean period of 0.24 seconds and produces an acceleration response spectrum

(Figure 7.3.c) with a relative narrow band in the high frequency range (appropriate

for the structure in question with the fundamental period of 0.276 s). The described

accelerogram is applied on all the nodes of the ground elements in the x direction.

Prior to the dynamic analysis, a static analysis is performed in order to realize contact

forces between the ground and the structure and to achieve a state of initial deformations.

For this purpose, Dirichlet conditions of zero displacements are imposed at the bottom

surface in the vertical direction and at the lateral surface in the horizontal direction.

A series of numerical analyses are performed varying the peak ground acceleration PGA

(0.1g, 0.2g and 0.3g) and friction coefficients µ (0.10, 0.25, 0.40 and 0.55). Friction coeffi-

cients between the concrete surface and surface of various ground types have a large range

of values. Additionally, many factors can change their typical values. For example, wet

conditions and thermal insulation below the foundation can significantly reduce friction.

Furthermore, there are special constructions details, such as the friction pendulum sys-

tem (FPS), that allow for a controlled sliding of the foundations by intentionally reducing

friction. The emphasis here is not on the exact values of friction coefficients, but rather

to investigate their influence on the SSI with contact discontinuity and consequently on

the structure response.

Table 7.3. shows maximum total displacements (dtot) of the top of the column, maximum

relative displacements (drel) and relative velocities (vrel) and maximum total base shear

force (B.S.) for various of PGA and µ. The total B.S. force is equal to the horizontal

component of the contact forces at a certain time which is, as mentioned before, limited

in magnitude by the respective vertical component. The energy of the ground motion is

transmitted to the structure through friction. When the maximal allowable friction force

is reached, sliding between the ground and the foundation occurs. For the motion of the

lowest intensity studied (0.1g), the value of the friction coefficient µ = 0.25 is sufficient to

prevent sliding. For lower values of µ, sliding occurs and energy dissipates through fric-

tion and for larger values of µ the response remains virtually unchanged. With increasing

the intensity of the motion to PGA of 0.2g and then 0.3g, the threshold value of µ raises

to 0.40 and 0.55, respectively. The mentioned thresholds are a consequence of the weight

of the structure and the investigated structure is fairly light. Increasing the weight of

the structure would increase the maximal allowable friction force and consequently the

friction thresholds.

An illustration of sliding (for the case of PGA = 0.2g and µ =0.1) is shown in Figure

7.11.a and 7.11.b. Figure 7.11.a shows the relative movement of the footing to the ground

and Figure 7.11.b the respective horizontal contact force. When the horizontal contact



90 Chapter 7. Numerical studies

Table 7.3.: Maximum total displacement dtot of the top of the column, relative dis-
placements drel and relative velocities vrel and maximal total base shear force B.S. for
various of values of PGA and µ.

PGA (g) µ dtot (cm) drel (cm) vrel (cm/s) B.S. (kN)

0.1 0.10 1.36 0.39 9.06 8.81
0.25 1.36 0.58 14.81 17.34

0.2
0.10 2.13 0.50 12.49 8.94
0.25 2.75 0.98 23.43 35.77
0.40 2.76 1.12 26.47 31.83

0.3

0.10 0.58 0.18 4.69 8.77
0.25 2.51 1.71 14.66 66.00
0.40 2.65 1.04 9.61 36.64
0.55 2.69 1.70 12.38 56.67

force reaches the maximal allowable value, represented by a dashed horizontal line, starts

the sliding between the structure and the ground. In the pictured case, this threshold

was reached 4 times. After 4 s the ground motion stops and the structure continues to

oscillate freely but with a residual displacement of the entire structure.
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Figure 7.11.: (a) horizontal slip between the foundation and the soil and (b) horizontal
contact force, both for PGA of 0,2g and µ of 0,1.

As expected, increasing the coefficient of friction for a given level of ground motion,

more energy is transmitted to the structure, and less is dissipated through sliding, thus

increasing the relative displacements, relative velocities and the total B.S. force (see

Table 7.3.). Figure 7.12. shows the relative displacements of the structure for µ = 0.10

(black line), µ = 0.25 (blue line) and µ = 0.25 (red line) for the case of PGA = 0.2g.

Energy transformations in the structure for µ = 0.10 are shown in Figure 7.12.a. It

can be noted that the kinetic energy is the most present form and reaches its maximum

values while the sliding occurs (translator movement of the entire structure). At the same

time the variation of the potential energy is negligible. Increasing the friction coefficient

even more (to µ = 0.40) the foundation undergoes partial uplifting from the ground and
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rocking becomes the main form of oscillations. Figure 7.13.b clearly shows the rocking

phenomena in the form of energy transformation and in particular potential energy.
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Figure 7.12.: Relative displacements for PGA of 0.2g and µ = 0.10 (black), µ = 0.25
(blue) and µ = 0.40 (red).
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Figure 7.13.: Structure energy transformations for PGA = 0.2g and µ = 0.1 (a) and
µ = 0.4 (b).

For higher intensity of ground motions rocking becomes very important. While one side

of the footing detaches from the ground (foundation uplifting), the other side of the

footing exhibits concentrated compressive loads on the ground (see Figure 7.14.). If the

bearing capacity of the soil is reached the rocking is damped which may lead to collapse

due to soil failure. Otherwise, the rocking can persist which may lead to collapse by

dynamic instability (overturning). In both cases the non-linear behaviour of the ground

is important. Note that even treating the soil as perfectly elastic, once that uplift occurs,

the problem becomes geometrically non-linear. Allowing plastic deformations of soil

below the footing the soil start to act as a cushion reducing the impact during the

rocking. To simulate a complete overturning of the structure, the potential contractor
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nodes list should include all the nodes on the boundary of the structure. That would, of

course, dramatically increase the computational time.

 

 

 

(a) Structure with resultant
contact forces on the founda-
tion.

 

 

 

(b) Cross section of the ground with the structure at the same
moment.

Figure 7.14.: Snapshots from the FE analysis in the moment of uplifting.

As demonstrated, treating the soil structure interface as a continuum can lead to realistic

results only for special cases (combinations of certain ground motion intensities with

certain values of µ). To correctly account for the sliding and rocking phenomena the

soil structure interface should be treated as a strong discontinuity. In both of this

cases (sliding and rocking) the natural frequency period of the system increases. This is

important since the typical ground motion carries virtually no energy at large periods of

oscillations. The overall effect can be beneficial or detrimental. This depends on many

parameters which show the highly non-linear nature of the contact phenomena.

As mentioned before, the emphasis of the present numerical investigation is on the mod-

elling of soil structure interaction with the application of full contact and geometric

non-linearities. In this sense, two parameters are studied in some detail regarding the

structural response: the friction coefficient between the two bodies and the intensity of

the ground motion. There are many other parameters which have an influence on the

structure response but the analysis of their significance is out the scope of this study.

They interact in a complex manner with varied importance in different cases. Some

of these parameters are the following: characteristics of the ground motion (frequency
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content and duration), characteristics of the structure (dynamic properties, slenderness,

size and shape of the foundations), characteristics of the soil (stiffness and strength) and

other.





Chapter 8.

Summary and conclusions

Summary

In the present thesis, a three-dimensional finite element model for non-linear dynamic

analysis of seismic site and structure response was proposed and discussed. The aim of

this thesis was to investigate the objectivity of the current principles used in the design

of structures for earthquake resistance and formulations of guidelines for their improve-

ment with the purpose of constructing more reliable and economic structures. There

was also an intention to demonstrate the possibility of advanced numerical approaches

in simulation of complex engineering problems such as soil-structure interaction in case of

earthquake loading. Although, such an approach cannot be employed in standard struc-

tural design, it can be effectively used in design of structures of common interest, such

as bridges, nuclear power plants and similar kind of structures. The primary objective of

this thesis was the development and application of an original computer program code

(written in Fortran language) which was used in the two presented numerical studies.

First numerical study includes modelling of a reinforced concrete frame with a large

portion of the ground consisting of various horizontal layers resting on rigid bedrock.

The investigated examples encompass geometry and phenomena in the range of several

orders of magnitude: starting from the ground (hundreds of meters), RC structure (m),

steel reinforcement (cm) and, finally, cracking of concrete (mm). Therefore, considering

the inevitable large-size models and all the incorporated non-linearities, a problem of

computational efficiency merges naturally. The influence of soil layers configurations on

the ground and structure response due to earthquake was investigated.

Second numerical study focuses on the soil - structure interface which was treated as a

strong discontinuity. Based on a structure with relatively simple geometry a parametric
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study was carried out by varying the intensity of the ground motion and the coefficient of

friction. Two important interconnected non-linear mechanisms were studied - foundation

sliding and/or uplifting and formation and accumulation of plastic deformations in the

ground below the footing.

The numerical formulation of the problems lies in the framework of continuum mechan-

ics and irreversible thermodynamics. Finite element method was used to perform the

discretisation of the governing differential equations in space and the finite difference

method was used for the discretisation of time. Total Lagrange formulation of finite

strain was adopted to account for large deformations and rotations. Cracking and dam-

age of concrete were accounted for by applying the microplane model within the smeared

cracks concept. The reinforcement and the foundation rock masses were modelled ac-

cording to theory of plasticity adopting the Von Mises and Drucker-Prager yield criteria.

The interface between the foundation and the soil was regarded as a strong discontinuity

and modelled on the principles of contact mechanics.

Conclusions

Based on the numerical results obtained in the analyses, the following can be concluded.

First numerical study

The presented model is able to reproduce seismic wave propagation through the ground

and assess its impact on a RC structure. The developed model does not need to assume

the surface ground motion. Instead, the surface ground motion is a result of the mo-

tion of the bedrock influenced by the different ground layers above the bedrock and the

structure itself. Comparing the response acceleration spectra for different ground con-

figurations, it can be seen that stiffer sites amplify high frequencies more than the softer

sites. Similarly, the softer sites amplify mid-range frequencies more than stiffer sites.

The quality of the top ground layer has a crucial role in the surface ground motions.

Resulting PGA and PGA/PGV ratio increase as ground becomes softer. Significant dif-

ference in the structural response obtained from the linear analysis with initial stiffness

and full non-linear analysis is observed. The structural stiffness degradation in non-linear

analysis leads to lower natural frequencies of the structure and thus affects its response.

For a given accelerogram, even a small difference in the fundamental period of oscillation

can have a major effect on the structural response. Non-linear soil behaviour becomes

important for ground motions of higher intensity and, generally, it can be expected that

non-linear modelling would decrease the demand on structure. Whether the neglect of

this effects is conservative or non-conservative depends on the specific problem at hand

and must be evaluated on a case by case basis. For a typical site, parameters based on
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site-specific analyses are likely to be more accurate than code-based parameters and they

are also likely to result in more economical design. Finally, the implemented microplane

model for concrete and explicitly modelling of reinforcement allow for a detailed dam-

age analysis. Such advanced and detailed models can give an edge in assessing seismic

performance, but still not without a high computational cost.

Second numerical study

In the presented case study almost all of the induced seismic energy is transferred to

the structure through the contact discontinuity by friction forces. When the maximum

allowable frictional force is reached, sliding between the ground and the foundation oc-

curs, which becomes the principal source of energy dissipation that in turn reduces the

demand on the structure. For every level of ground motion there is a threshold value

of the coefficient of friction below which sliding occurs, which makes the continuum as-

sumption inappropriate. On the other extreme, for high ground motion intensities and

with large enough values of µ usual forms of structure oscillations are replaced by rock-

ing. In both cases the non-linear behaviour of the supporting ground is important. The

interplay of these mechanisms can possibly lead to the collapse by dynamic instability

(overturning) or collapse by soil failure. For extreme scenarios with highly geometrically

non-linear behaviour, as sliding and rocking, the proposed model is more adequate than

usual spring-dashpot elements with continuum assumptions with a reasonable computa-

tional efficiency. Being able to capture these phenomena, the presented model could be

of interest for special structures like tall columns, monuments, elevated water and control

towers and for special construction details relaying on very low friction coefficients like

the friction pendulum system.

Future work

Future work will go in two basic directions. Firstly, the inevitable issue of computational

efficiency will be approached by an attempt to parallelise the most expensive routines.

That should lead to finer discretisations, but without the increase of computational time.

Also, a more efficient code should be able to process more complex structures, especially

when including contact discontinuity in modelling SSI as in the second numerical study.

Secondly, new constitutive laws will be added into the code for modelling different types

of foundation soils with the possibility to include materials with high initial anisotropy.





Appendix A

Kik-Net time-history record

The earthquake record used in the present study is taken from the Japanese digital

strong-motion seismograph network Kik-net (NIED, 2013) which consists of pairs of

seismographs installed in borehole together with seismographs on the ground surface.

The accelerogram shown in Figure 7.3. was recorded at the Gozenyama site on 11 March

2011 on a borehole seismograph installed on bedrock at an altitude of −62 m. Since the

used accelerogram does not represent outcrop motions, but rather in-depth motions, the

deconvolution analysis is not really necessary. The numerical analysis is performed for a

2.25 s fragment of the original record scaled to peak ground acceleration (PGA) of 0.1 g

with peak ground velocity (PGV) equal to 0.05405 m/s and peak ground displacement

(PGD) equal to 0.00683 m. The selected fragment has a mean period of 0.24 s and

produces an acceleration response spectrum with a relative narrow band in the high

frequency range.
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Figure A1.: The Japanese digital strong-motion seismograph network Kik-net.
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Figure A2.: Displacement, velocity and acceleration time-history of the used record.
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Figure A3.: Acceleration response spectrum of the used record.
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Supplementary material - numerical

study 1
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Figure B1.: Reactions of the RC frame columns.

103



104 Appendix B Supplementary material - . . .

 (a) 

TIME (s) 

N
O

R
M

A
L

 S
T

R
E

S
S

 

σ
z
z
 (

M
P

a
) 

(b) 

0.1 0.2 0.3 0.4 0.5 0.6 0 

1.5 
1.0 
0.5 

0 

 0.5  

 1.0 

 1.5 

 2.0 

 2.5 

 3.0 
 

Figure B2.: Normal stress time history for a single element in the base of the column.
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Figure B3.: Crack progression in RC frame members.
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